【題目】在我們的課本第142頁“4.4課題學習”中,有包裝紙盒的設計制作方法.這里的右圖,是設計師為“XX快遞”設計的長方體包裝盒的輪廓草圖,其中長30CM、寬20CM、高18CM,正面有“快遞”字樣,上面有“上”字樣,棱AB是上蓋的掀開處,棱CD是粘合處.請你想想,如何制作這個包裝盒,然后完善下面的制作步驟.
步驟1:在符合尺寸規(guī)格的硬紙板上,畫出這個長方體的展開圖(草圖).注意,要預留出黏合處,并適當剪去棱角.
步驟2:在你上面畫出的展開草圖上,標出對應的A、B、C、D的位置,標出長30CM、寬20CM、高18CM所在線段,并把“上”和“快遞”標注在所在面的位置上.
步驟3:裁下展開圖,折疊并粘好黏合處,得到長方體包裝盒.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學興趣小組想測量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD與地面成30°角,且此時測得高1 m的標桿的影長為2 m,則電線桿的高度為________m(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA,PB,DE切⊙O于點A,B,C,D在PA上,E在PB上,
(1)若PA=10,求△PDE的周長;
(2)若∠P=50°,求∠O的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長.
(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解初中生畢業(yè)后就讀普通高中或就讀中等職業(yè)技術(shù)學校的意向,某校對八、九年級部分學生進行了一次調(diào)查,調(diào)查結(jié)果有三種情況:A.只愿意就讀普通高中;B.只愿意就讀中等職業(yè)技術(shù)學校;C.就讀普通高中或中等職業(yè)技術(shù)學校都愿意.學校教務處將調(diào)查數(shù)據(jù)進行了整理,并繪制了如圖25-3-3所示的尚不完整的統(tǒng)計圖,請根據(jù)相關信息,解答下列問題:
(1)本次活動共調(diào)查了多少名學生?
(2)補全圖①,并求出圖②中B區(qū)域的圓心角的度數(shù);
(3)若該校八、九年級的學生共有2800名,請估計該校八、九年級學生中只愿意就讀中等職業(yè)技術(shù)學校的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,AD是BC邊上的高,AE平分∠BAC.
(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限內(nèi)作正方形ABCD,頂點D在雙曲線上,將該正方形沿x軸負方向平移個單位長度后,頂點C恰好落在雙曲線上,則的值是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com