【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.
科目:初中數學 來源: 題型:
【題目】如圖,點P是線段AB的中點,Q為線段PB上一點,分別以AQ、AP、PQ、QB為一邊作正方形,其面積對應地記作SACDQ,SAEFP,SPGHQ,SQIJB,設AP=m,QB=n,
(1)用含有m,n的代數式表示正方形ACDQ的面積SACDQ.
(2)SACDQ+SQIJB與SAEFP+SPGHQ具有怎樣的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知O為直線AB上一點,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,則∠BOE的度數為___________.(用含α的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一點A(4,-1),將點A向左平移5個單位再向上平移5個單位得到點B,直線過點A、B,交x軸于點C,交y軸于點D, P是直線上的一個動點,通過研究發(fā)現(xiàn)直線上所有點的橫坐標x與縱坐標y 都是二元一次方程x+y=3的解.
①直接寫出點B,C,D的坐標;B_______, C_________, D________
②求
③當時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過邊長為3的等邊三角形ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,問:若PA=CQ時,連接PQ交AC邊于D,求DE的長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我們的課本第142頁“4.4課題學習”中,有包裝紙盒的設計制作方法.這里的右圖,是設計師為“XX快遞”設計的長方體包裝盒的輪廓草圖,其中長30CM、寬20CM、高18CM,正面有“快遞”字樣,上面有“上”字樣,棱AB是上蓋的掀開處,棱CD是粘合處.請你想想,如何制作這個包裝盒,然后完善下面的制作步驟.
步驟1:在符合尺寸規(guī)格的硬紙板上,畫出這個長方體的展開圖(草圖).注意,要預留出黏合處,并適當剪去棱角.
步驟2:在你上面畫出的展開草圖上,標出對應的A、B、C、D的位置,標出長30CM、寬20CM、高18CM所在線段,并把“上”和“快遞”標注在所在面的位置上.
步驟3:裁下展開圖,折疊并粘好黏合處,得到長方體包裝盒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小組做“用頻率估計概率”的試驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結果的試驗最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C. 暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D. 擲一個質地均勻的正六面體骰子,向上的面點數是4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=-x2+bx+c的圖象過點(-1,-8),(0,-3).
(1)求此二次函數的表達式,并用配方法將其化為y=a(x-h)2+k的形式;
(2)用五點法畫出此函數圖象的示意圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,任意一個有理數與無理數的和為無理數,任意一個不為零的有理數與一個無理數的積為無理數,而零與無理數的積為零.由此可得:如果mx+n=0,其中m、n為有理數,x為無理數,那么m=0且n=0.
(1)如果,其中a、b為有理數,那么a= ,b= .
(2)如果,其中a、b為有理數,求a+2b的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com