【題目】在△ABC中,AD是角平分線,∠B=54°,∠C=76°.
(1)求∠ADB和∠ADC的度數(shù);
(2)若DE⊥AC,求∠EDC的度數(shù).
【答案】(1) 101°,79°;(2)14°.
【解析】試題分析:(1)、首先根據(jù)三角形內(nèi)角和定理求出∠BAC的度數(shù),根據(jù)角平分線的性質(zhì)求出∠BAD和∠DAC的度數(shù),然后根據(jù)三角形內(nèi)角和定理得出∠ADB和∠ADC的度數(shù);(2)、根據(jù)垂直得出∠AED=90°,然后根據(jù)外角的性質(zhì)求出∠EDC的度數(shù).
試題解析:(1)、∵∠B=54°,∠C=76° , ∴∠BAC=180°-54°-76°=50°,
∵AD是角平分線, ∴∠BAD=∠DAC=25°,
∴∠ADB=180°-54°-25°=101°,∠ADC=180°-76°-25°=79°;
(2)、∵DE⊥AC,∴∠AED=90°,∴∠EDC=90°-76°=14°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對(duì)九年級(jí)一班、二班各10名學(xué)生進(jìn)行漢字聽寫測(cè)試,計(jì)分采用10分制(得分均取整數(shù)),成績達(dá)到6分或6分以上為及格,達(dá)到9分或10分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2)
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | c | 10 | 4.94 | 80% | 40% |
(1)求表2中,a,b,c;
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班成績比一班成績好;但也有人堅(jiān)定認(rèn)為一班成績比二班成績好.請(qǐng)你給出支持一班成績好的兩條理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明元旦前到文具超市用15元買了若干練習(xí)本,元旦這一天,該超市開展優(yōu)惠活動(dòng),同樣的練習(xí)本比元旦前便宜0.2元,小明又用20.7元錢買練習(xí)本,所買練習(xí)本的數(shù)量比上一次多50%,小明元旦前在該超市買了多少本練習(xí)本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究問題:一個(gè)不透明的盒中裝有若干個(gè)只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量? 操作方法:先從盒中摸出8個(gè)球,畫上記號(hào)放回盒中,再進(jìn)行摸球?qū)嶒?yàn),摸球?qū)嶒?yàn)的要求:先攪拌均勻,每次摸出一個(gè)球,放回盒中,再繼續(xù).
活動(dòng)結(jié)果:摸球?qū)嶒?yàn)活動(dòng)一共做了50次,統(tǒng)計(jì)結(jié)果如下表:
球的顏色 | 無記號(hào) | 有記號(hào) | ||
紅色 | 黃色 | 紅色 | 黃色 | |
摸到的次數(shù) | 18 | 28 | 2 | 2 |
推測(cè)計(jì)算:由上述的摸球?qū)嶒?yàn)可推算:
(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四邊形ABCD的周長為32.
(1)求∠BDC的度數(shù);
(2)四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB與△OCD都是等邊三角形,連接AC、BD相交于點(diǎn)E.
(1)求證:①△OAC≌△OBD,②∠AEB=60°;
(2)連結(jié)OE,OE是否平分∠AED?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義新運(yùn)算“△”,對(duì)于任意有理數(shù)a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,請(qǐng)根據(jù)上述知識(shí)解決問題:
(1)化簡:(x-1)△(2+x);
(2)若(1)中的代數(shù)式的值大于6而小于9,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別是C、D.
(1)請(qǐng)判斷△EDC的形狀并說明理由;
(2)求證OE是線段CD的垂直平分線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com