【題目】如圖,在四邊形ABCD中,AB=AD=8,A=60°,ADC=150°,四邊形ABCD的周長為32.

(1)求∠BDC的度數(shù);

(2)四邊形ABCD的面積.

【答案】(1)90°;(2)24+16

【解析】

1)先根據(jù)題意得出△ABD是等邊三角形BCD是直角三角形,進(jìn)而可求出BDC的度數(shù);

2)根據(jù)四邊形周長計算BC,CD即可求△BCD的面積,正△ABD的面積根據(jù)計算公式計算即可求得四邊形ABCD的面積為兩個三角形的面積的和

1AB=AD=8cm,A=60°,∴△ABD是等邊三角形

∵∠ADC=150°,∴∠BDC=150°﹣60°=90°;

2∵△ABD為正三角形AB=8cm,∴其面積為××AB×AD=16

BC+CD=3288=16,BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面積=×6×8=24,故四邊形ABCD的面積為24+16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B=40°,C=80°,ADBC邊上的高,AE平分∠BAC.

(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形ABC中,D是邊BC上的一點,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面積是(  )

A. 30 B. 36 C. 72 D. 125

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點.

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,tanB= ,cosC= ,AC= .求:
(1)BC的長;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=C=90°,AB=AD=9,AEBCE,AE=8,則CD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD的外側(cè),作兩個等邊三角形ADE和DCF,連接AF,BE

(1)請判斷:AF與BE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予說明
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

同步練習(xí)冊答案