【題目】研究問題:一個(gè)不透明的盒中裝有若干個(gè)只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量? 操作方法:先從盒中摸出8個(gè)球,畫上記號放回盒中,再進(jìn)行摸球?qū)嶒?yàn),摸球?qū)嶒?yàn)的要求:先攪拌均勻,每次摸出一個(gè)球,放回盒中,再繼續(xù).
活動(dòng)結(jié)果:摸球?qū)嶒?yàn)活動(dòng)一共做了50次,統(tǒng)計(jì)結(jié)果如下表:

球的顏色

無記號

有記號

紅色

黃色

紅色

黃色

摸到的次數(shù)

18

28

2

2

推測計(jì)算:由上述的摸球?qū)嶒?yàn)可推算:
(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個(gè)?

【答案】
(1)解:由題意可知,50次摸球?qū)嶒?yàn)活動(dòng)中,出現(xiàn)紅球20次,黃球30次,

∴紅球所占百分比為20÷50=40%,

黃球所占百分比為30÷50=60%,

答:紅球占40%,黃球占60%


(2)解:由題意可知,50次摸球?qū)嶒?yàn)活動(dòng)中,出現(xiàn)有記號的球4次,

∴總球數(shù)為8÷ =100,

∴紅球數(shù)為100×40%=40,

答:盒中紅球有40個(gè)


【解析】(1)根據(jù)表格數(shù)據(jù)可以得到50次摸球?qū)嶒?yàn)活動(dòng)中,出現(xiàn)紅球20次,黃球30次,由此即可求出盒中紅球、黃球各占總球數(shù)的百分比;(2)由題意可知50次摸球?qū)嶒?yàn)活動(dòng)中,出現(xiàn)有記號的球4次,由此可以求出總球數(shù),然后利用(1)的結(jié)論即可求出盒中紅球.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時(shí)小聰從B地出發(fā)向A地行走,如圖所示,相交于點(diǎn)P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時(shí)間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是(
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整

EFAD,(   

∴∠2=   .(兩直線平行,同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一自助夏令營活動(dòng)中,小明同學(xué)從營地A出發(fā),要到A地的北偏東60°方向的C處,他先沿正東方向走了200m到達(dá)B地,再沿北偏東30°方向走,恰能到達(dá)目的地C(如圖),那么,由此可知,B、C兩地相距 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠CAB+∠ABC=90°,AD平分∠CAB,與BC邊交于點(diǎn)D,BE平分∠ABC與AC邊交于點(diǎn)E。

(1)依題意補(bǔ)全圖形,并猜想∠DAB+∠EBA的度數(shù)等于__________

(2)證明以上結(jié)論。

證明:∵ AD平分∠CAB,BE平分∠ABC,

∴∠DAB=∠CAB,

∠EBA=__________.

(理由:____________________

∵∠CAB+∠ABC=90°,

∴∠DAB+∠EBA=______×(∠______+∠______)=______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線l1 , l2分別經(jīng)過點(diǎn)A(1,0),點(diǎn)B(﹣3,0),并且當(dāng)兩直線同時(shí)相交于y正半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2 , 經(jīng)過點(diǎn)A、B、C的拋物線的對稱軸與直線l1交于點(diǎn)K,如圖所示.

(1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對稱軸被直線l1 , 拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請說明理由;
(3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請找出使△MCK為等腰三角形的點(diǎn)M,簡述理由,并寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,AD是角平分線B=54°,C=76°.

(1)求∠ADB和∠ADC的度數(shù);

(2)DEAC,求∠EDC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

(1)27﹣16+(﹣7)﹣18;

(2)(﹣6)×(﹣)÷(﹣);

(3)()×60;

(4)﹣24+3×(﹣1)4﹣(﹣2)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y =(2m+1) x+ m-3

(1) 若函數(shù)圖象經(jīng)過原點(diǎn),m的值.

(2) 若函數(shù)圖象在y軸的交點(diǎn)的縱坐標(biāo)為-2,求m的值.

(3)若函數(shù)的圖象平行直線y=-3x–3,求m的值.

(4)若這個(gè)函數(shù)是一次函數(shù),y隨著x的增大而減小,m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案