【題目】某健身器材公司銷售A,B兩款跑步機(jī),這兩款跑步機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
| A | B |
進(jìn)價(jià)元臺(tái) | 4500 | 6200 |
售價(jià)元臺(tái) | 6000 | 8000 |
該公司計(jì)劃購(gòu)進(jìn)兩款跑步機(jī)若干臺(tái),共需萬(wàn)元,全部銷售后可獲利萬(wàn)元.
問該公司計(jì)劃購(gòu)進(jìn)A,B兩款跑步機(jī)各多少臺(tái)?
為了適應(yīng)市場(chǎng)需求的變化,該公司決定在原計(jì)劃的基礎(chǔ)上,減少A款跑步機(jī)的購(gòu)進(jìn)數(shù)量,增加B款跑步機(jī)的購(gòu)進(jìn)數(shù)量,已知B款跑步機(jī)增加的數(shù)量是A款跑步機(jī)減少的數(shù)量的2倍.若用于購(gòu)進(jìn)這兩種款跑步機(jī)的總資金不超過29.6萬(wàn)元,問A種款跑步機(jī)購(gòu)進(jìn)數(shù)量至多減少多少臺(tái)?
【答案】(1)A跑步機(jī)10臺(tái),購(gòu)進(jìn)B跑步機(jī)15臺(tái).(2)A款跑步機(jī)購(gòu)進(jìn)數(shù)量至多減少2臺(tái).
【解析】
(1)設(shè)該公司計(jì)劃購(gòu)進(jìn)A跑步機(jī)x臺(tái),購(gòu)進(jìn)B跑步機(jī)y臺(tái),根據(jù)共需萬(wàn)元,全部銷售后可獲利萬(wàn)元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)A款跑步機(jī)進(jìn)數(shù)量減少m套,則B款跑步機(jī)購(gòu)進(jìn)數(shù)量增加2m套,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合用于購(gòu)進(jìn)這兩款跑步機(jī)的總資金不超過29.6萬(wàn)元,即可得出關(guān)于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.
(1)設(shè)該公司計(jì)劃購(gòu)進(jìn)A跑步機(jī)x臺(tái),購(gòu)進(jìn)B跑步機(jī)y臺(tái),根據(jù)題意得: ,
解得: .
答:該公司計(jì)劃購(gòu)進(jìn)A跑步機(jī)10臺(tái),購(gòu)進(jìn)B跑步機(jī)15臺(tái).
(2)設(shè)A款跑步機(jī)購(gòu)進(jìn)數(shù)量減少m臺(tái),則B款跑步機(jī)購(gòu)進(jìn)數(shù)量增加2m臺(tái),
根據(jù)題意得:0.45(10-m)+0.62(15+2m)≤29.6,
解得:m≤2,
∵m為整數(shù),
∴m≤2.
答:A款跑步機(jī)購(gòu)進(jìn)數(shù)量至多減少2臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象交x軸于A(-1, 0),B(4, 0)兩點(diǎn),交y軸于點(diǎn)C.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿AB方向運(yùn)動(dòng),過點(diǎn)M作MN⊥x軸交直線BC于點(diǎn)N,交拋物線于點(diǎn)D,連接AC.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BD,當(dāng)時(shí),求△DNB的面積;
(3)在直線MN上存在一點(diǎn)P,當(dāng)△PBC是以∠BPC為直角的等腰直角三角形時(shí),直接寫出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校學(xué)生對(duì)以下四個(gè)電視節(jié)目:最強(qiáng)大腦、中國(guó)詩(shī)詞大會(huì)、朗讀者、出彩中國(guó)人的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中所提供的信息,完成下列問題:
本次調(diào)查的學(xué)生人數(shù)為______;
在扇形統(tǒng)計(jì)圖中,A部分所占圓心角的度數(shù)為______;
請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
若該校共有3000名學(xué)生,估計(jì)該校最喜愛中國(guó)詩(shī)詞大會(huì)的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演門票,他們決定采用抽卡片的辦法確定誰(shuí)去.規(guī)則如下:
將正面分別標(biāo)有數(shù)字1、2、3、4的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上,再隨機(jī)抽出一張記下數(shù)字.如果兩個(gè)數(shù)字之和為奇數(shù),則小明去;如果兩個(gè)數(shù)字之和為偶數(shù),則小亮去.
(1)請(qǐng)用列表或畫樹狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn)的結(jié)果;
(2)你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)E在BC邊上.AE=AB,將線段AC繞點(diǎn)A旋轉(zhuǎn)到AF的位置.使得∠CAF=∠BAE.連接EF,EF與AC交于點(diǎn)G.
(1)求證:EF =BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形是平行四邊形,,若,的長(zhǎng)是關(guān)于的一元二次方程的兩個(gè)根,且.
(1)直接寫出:______,______;
(2)若點(diǎn)為軸正半軸上的點(diǎn),且;
①求經(jīng)過,兩點(diǎn)的直線解析式;
②求證:.
(3)若點(diǎn)在平面直角坐標(biāo)系內(nèi),則在直線上是否存在點(diǎn),使以,,,為頂點(diǎn)的四邊形為菱形?若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行
銷售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))于銷售單價(jià)x(元
/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示.
(1)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查銷售規(guī)律,求利潤(rùn)w(元)與銷售單價(jià)x(元/個(gè))之間的
函數(shù)關(guān)系式;
(3)若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤(rùn),試求此時(shí)這種許愿瓶的銷售單價(jià),并求出
最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com