【題目】如圖,在平面直角坐標(biāo)系xOy,函數(shù)y=k0,x0)的圖象與直線y=2x2交于點Q2m).

1)求m,k的值;

2)已知點Pa,0)(a0x軸上一動點過點P作平行于y軸的直線交直線y=2x2于點M,交函數(shù)y=的圖象于點N

當(dāng)a=4,MN的長;

PMPN,結(jié)合圖象,直接寫出a的取值范圍

【答案】1m=2k=4;(2①MN=5②a2

【解析】試題分析:1)把Q2,m代入y=2x2,求出m的值,再把求得的Q2,2代入y=,可求出k的值;

2)①把a=4分別代入y=y=2x2中,求出點M和點N的縱坐標(biāo),從而可求出MN的長度;②由圖像可知,當(dāng)a>2時,PM>PN.

解:1∵直線y=2x﹣2經(jīng)過點Q2,m),m=2,Q2,2).

∵函數(shù)y=經(jīng)過點Q22),k=4

2①當(dāng)a=4時,P4,0).

y=2x2,y=,M4,6),N41),MN=5

②∵PMPN,a2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】袋子中裝有2個紅球,1個黃球,它們除顏色外其余都相同. 小明和小張做摸球游戲,約定一次游戲規(guī)則是:小張先從袋中任意摸出1個球記下顏色后放回,小明再從袋中摸出1個球記下顏色后放回,如果兩人摸到的球的顏色相同,小張贏,否則小明贏.

1)請用樹狀圖或列表格法表示一次游戲中所有可能出現(xiàn)的結(jié)果;

2)這個游戲規(guī)則對雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務(wù),安排甲、乙兩個大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產(chǎn)任務(wù)時,甲廠比乙廠少用5天.

1)求甲、乙每天能生產(chǎn)多少萬只口罩?

2)問至少應(yīng)安排兩個工廠工作多少天才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB、FC

1)求證:FB=FC

2)求證:FB2=FAFD;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°,B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°,CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=,CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩點,,且點B在第一象限,ABx軸,點y軸上。

1)求點P的坐標(biāo)。

2)試確定的取值范圍。

3)當(dāng)時,求PAB的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點A,B,點P在該函數(shù)圖象上,Px軸、y軸的距離分別為d1,d2

(1)當(dāng)P為線段AB的中點時,d1+d2=_____;

(2)設(shè)點P橫坐標(biāo)為m,用含m的代數(shù)式表示d1+d2,并求當(dāng)d1+d2=3時點P的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

1)數(shù)軸上表示的兩點之間的距離是__________;表示兩點之間的距離是__________;

2)如果,那么__________;

3)若,,且數(shù)在數(shù)軸上表示的點分別是點、點,則、兩點間的最大距離是_____,最小距離是______;

4)求代數(shù)式的最小值,并寫出此時可取哪些整數(shù)值?

5)求代數(shù)式的最小值.

6)若表示一個有理數(shù),則代數(shù)式有最大值嗎?若有,請求出最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC 的位置如圖所示:(每個小方格都是邊長為 1 個單位長度的正方形)

1)將ABC 沿 y 軸方向向下平移 4 個單位長度得到 則點 坐標(biāo)為_______;

2)將ABC 繞著點 O 逆時針旋轉(zhuǎn) 90°,畫出旋轉(zhuǎn)后得到的;

3)直接寫出點, 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案