【題目】已知:如圖,D、E是△ABC中BC邊上的兩點(diǎn),AD=AE,要證明△ABE≌△ACD,應(yīng)該再增加一個(gè)什么條件?請(qǐng)你增加這個(gè)條件后再給予證明.
【答案】EC=BD,或AB=AC,或BE=CD,或∠B=∠C或∠BAD=∠CAE或∠BAE=∠CAD
【解析】試題分析:本題已知了三角形的一組邊相等,根據(jù)題目條件可求出∠ADE=∠AED,則增加EC=BD,或AB=AC,或BE=CD,或∠B=∠C或∠BAD=∠CAE或∠BAE=∠CAD等都可使△ABE≌△ACD.
試題解析:本題答案不唯一,增加一個(gè)條件可以是:EC=BD,或AB=AC,或BE=CD,或∠B=∠C或∠BAD=∠CAE或∠BAE=∠CAD等。
證明過程如下:證明:∵AD=AE,∴∠ADE=∠AED∴∠ADB=∠AEC∴△ABD≌△ACE(AAS)∴∠BAD=∠CAE∵∠BAD+∠DAE=∠CAE+∠DAE∴∠BAE=∠CAD∴△ABE≌△ACD(AAS).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.(1)求證:PA是⊙O的切線;
(2)過點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AG·AB=12,求AC的長(zhǎng);(3)在滿足(2)的條件下,若AF∶FD=1∶2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BCF=∠B+∠F.求證:AB//EF .
證明:經(jīng)過點(diǎn)C作CD//AB
∴∠BCD=∠B.( )
∵∠BCF=∠B+∠F,(已知)
∴∠ ( )=∠F.( )
∴CD//EF.( )
∴AB//EF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長(zhǎng)線上的點(diǎn),且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若∠AED=2∠EAD,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形對(duì)折后展開(圖④是連續(xù)兩次對(duì)折后再展開),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購(gòu)進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價(jià)比為2:3,單價(jià)和為200元.
(1)求A、B兩種禮盒的單價(jià)分別是多少元?
(2)該店主購(gòu)進(jìn)這兩種禮盒恰好用去9600元,且購(gòu)進(jìn)A種禮盒最多36個(gè),B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)根據(jù)市場(chǎng)行情,銷售一個(gè)A種禮盒可獲利10元,銷售一個(gè)B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個(gè)B種禮盒,為愛心公益基金捐款m元,每個(gè)A種禮盒的利潤(rùn)不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時(shí)店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,有下列結(jié)論:
①四邊形CEDF有可能成為正方形;
②△DFE是等腰直角三角形;
③四邊形CEDF的面積是定值;
④點(diǎn)C到線段EF的最大距離為.
其中正確的結(jié)論是( )
A.①④ B.②③ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com