【題目】如圖,將正方形對(duì)折后展開(kāi)(圖④是連續(xù)兩次對(duì)折后再展開(kāi)),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

【答案】C

【解析】如下圖,設(shè)正方形邊長(zhǎng)為,

1在圖中,,AB= ,∴∠ACB=30°,,

∴△ECB不滿足它的一條直角邊等于斜邊的一半;

2在圖中,, ,

∴由折疊的性質(zhì)可得 ,

∴△ADC的一條直角邊等于斜邊的一半;

3在圖中,, ,

,

∴△BDC不能滿足它的一條直角邊等于斜邊的一半

4在圖中,, ,

, ,

∴由折疊的性質(zhì)可得

,

∴△ABC的一條直角邊等于斜邊的一半.

綜上可得有個(gè)圖形中能得到一個(gè)直角三角形,且滿足條件一條直角邊是斜邊的一半

故選

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫(xiě)出∠DAE,B,C的數(shù)量關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出與關(guān)于直線成軸對(duì)稱(chēng)的△A′B′C′

2)線段CC′被直線      ;

3△ABC的面積為      ;

4)在直線上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC,AD是角平分線,B=54°,C=76°.

(1)求∠ADB和∠ADC的度數(shù);

(2)DEAC,求∠EDC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,D、E△ABCBC邊上的兩點(diǎn),AD=AE,要證明△ABE≌△ACD,應(yīng)該再增加一個(gè)什么條件?請(qǐng)你增加這個(gè)條件后再給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按每秒10°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周.在旋轉(zhuǎn)的過(guò)程中,假如第t秒時(shí),OA、OC、ON三條射線構(gòu)成相等的角,求此時(shí)t的值為多少?

(2)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)圖2,使ON在AOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正方形ABCD對(duì)角線BD上一點(diǎn),PEDC,PFBCE、F分別為垂足.

1)求證:APD≌△CPD;

2)若CF=3CE=4,求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)EAE=2,EB=6,DEB=30°,求弦CD長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案