【題目】如圖,海面上B,C兩島分別位于A島的正東和正北方向.一艘船從A島出發(fā),以18海里/時(shí)的速度向正北方向航行2小時(shí)到達(dá)C島,此時(shí)測得B島在C島的南偏東43°.求A,B兩島之間的距離.(結(jié)果精確到0.1海里)(參考數(shù)據(jù):sin43°=0.68,cos43°=0.73,tan43°=0.93)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,.點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動;點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動.點(diǎn)和分別以1和3的運(yùn)動速度同時(shí)開始運(yùn)動,兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動,在某時(shí)刻,分別過和作于,于.則點(diǎn)運(yùn)動時(shí)間等于____________時(shí),與全等。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組成員小華對本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)分布直方圖和頻數(shù)、頻率分布表.請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計(jì) |
頻數(shù) | 2 | 20 | 16 | 4 | 50 | |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | 1 |
(1)頻數(shù)、頻率分布表中 , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗(yàn),那么取得了93分的小華被選上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過平行四邊形ABCD對角線交點(diǎn)O的直線交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四邊形EFCD周長是( )
A. 16B. 15C. 14D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真閱讀,回答下面問題:如圖,為的中線,與相等嗎?(友情提示:表示三角形面積)
解:過點(diǎn)作邊上的高,
∵為的中線
∴
∵
∴
(1)用一句簡潔的文字表示上面這段內(nèi)容的結(jié)論;
(2)利用上面所得的結(jié)論,用不同的割法分別把下面兩個(gè)三角形面積4等分,(只要割線不同就算一種)
(3)已知:為的中線,點(diǎn)為邊上的中點(diǎn),若的面積為20,,求點(diǎn)到邊的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩根旗桿間相距12m,某人從點(diǎn)B沿BA走向點(diǎn)A,一段時(shí)間后他到達(dá)點(diǎn)M,此時(shí)他仰望旗桿的頂點(diǎn)C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運(yùn)動速度為1m/s,則這個(gè)人運(yùn)動到點(diǎn)M所用時(shí)間是_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA、PC與⊙O分別相切于點(diǎn)A、C,PC交AB的延長線于點(diǎn)D.DE⊥PO交PO的延長線于點(diǎn)E.
(1)求證:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年12月4日是第五個(gè)國家憲法日,也是第一個(gè)“憲法宣傳周”.甲、乙兩班各選派10名學(xué)生參加憲法知識競賽(滿分100分),成績?nèi)缦拢?/span>
成績 | 85 | 90 | 95 | 100 |
甲班參賽學(xué)生/人 | 1 | 1 | 5 | 3 |
乙班參賽學(xué)生/人 | 1 | 2 | 3 | 4 |
分別求甲、乙兩班參賽學(xué)生競賽成績的平均數(shù)和方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com