【題目】如圖,兩根旗桿間相距12m,某人從點B沿BA走向點A,一段時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,則這個人運動到點M所用時間是_______________
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點A(6,0),又點B(x,y)在第一象限內(nèi),且x+y=8,設(shè)△AOB的面積是S.
(1)寫出S與x之間的函數(shù)解析式,并求出x的取值范圍;
(2)畫出(1)中所求函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求證:AF平分∠BAC.
【答案】證明見解析.
【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證△ABF≌△ACF,從而證出AF平分∠BAC.
試題解析:證明:∵AB=AC(已知),
∴∠ABC=∠ACB(等邊對等角).
∵BD、CE分別是高,
∴BD⊥AC,CE⊥AB(高的定義).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°∠ABC,∠DBC=90°∠ACB.
∴∠ECB=∠DBC(等量代換).
∴FB=FC(等角對等邊),
在△ABF和△ACF中,
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形對應(yīng)角相等),
∴AF平分∠BAC.
【題型】解答題
【結(jié)束】
23
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.
(1)求證:CD=BE;
(2)已知CD=2,求AC的長;
(3)求證:AB=AC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+3分別與x,y軸交于點N,M,與反比例函數(shù)y= (x>0)的圖象交于點A,若AM:MN=2:3,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面一段文字:
問題:0.能用分?jǐn)?shù)表示嗎?
探求:步驟①設(shè)x=0.,
步驟②10x=10×0.,
步驟③10x=8.,
步驟④10x=8+0.,
步驟⑤10x=8+x,
步驟⑥9x=8,
步驟⑦x=.
根據(jù)你對這段文字的理解,回答下列問題:
(1)步驟①到步驟②的依據(jù)是______;
(2)仿照上述探求過程,請你嘗試把0.表示成分?jǐn)?shù)的形式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控手段達到節(jié)水的目的.該市自來水收費價格見價目表.
若某戶居民月份用水,則應(yīng)收水費:元.
(1)若該戶居民月份用水,則應(yīng)收水費______元;
(2)若該戶居民、月份共用水(月份用水量超過月份),共交水費元,則該戶居民,月份各用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分兩次在同一糧店內(nèi)買糧食,兩次的單價不同,甲每次購糧100千克,乙每次購糧100元.若規(guī)定:誰兩次購糧的平均單價低,誰的購糧方式就合算.那么這兩次購糧( )
A. 甲合算 B. 乙合算
C. 甲、乙一樣 D. 要看兩次的價格情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車制造廠開發(fā)一款新式電動汽車,計劃一年生產(chǎn)安裝360輛.由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓(xùn)后上崗,也能獨立進行電動汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):1名熟練和2名新工人每月可安裝12輛電動汽車;2名熟練工和3名新工人每月可安裝21輛電動汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發(fā)2000元的工資,給每名新工人每月發(fā)1200元工資,那么工廠應(yīng)招聘多少名新工人,使新工人的數(shù)量多于熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com