【題目】如圖所示,在平面直角坐標(biāo)系中,A00),B2,0),AP1B是等腰直角三角形,且∠P190°,把AP1B繞點B順時針旋轉(zhuǎn)180°,得到BP2C,把BP2C繞點C順時針旋轉(zhuǎn)180°,得到CP3D,依此類推,得到的等腰直角三角形的直角頂點P2017的坐標(biāo)為_____

【答案】4033,1

【解析】

根據(jù)等腰直角三角形的性質(zhì)可找出點P1的坐標(biāo),結(jié)合旋轉(zhuǎn)的性質(zhì)即可找出點P2、P3P4、P5、…、的坐標(biāo),根據(jù)坐標(biāo)的變化即可找出變化規(guī)律“P2n+14n+1,1),P2n+24n+3,﹣1)(n為自然數(shù))”,依此規(guī)律即可得出結(jié)論.

解:∵A00),B20),△AP1B是等腰直角三角形,且∠P190°,

P111).

∵把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C1,

P23,﹣1).

同理可得出:P35,1),P47,﹣1),P59,1),…,

P2n+14n+1,1),P2n+24n+3,﹣1)(n為自然數(shù)).

20172×1008+1,

P20174033,1).

故答案為:(40331

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中,有一個格點三角形ABC.(注:頂點均在網(wǎng)格線交點處的三角形稱為格點三角形.)

(1)ABC 三角形(填銳角”、“直角鈍角”);

(2)若PQ分別為線段AB、BC上的動點,當(dāng)PCPQ取得最小值時,

在網(wǎng)格中用無刻度的直尺,畫出線段PC、PQ.(請保留作圖痕跡.)

直接寫出PCPQ的最小值: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是長春新地標(biāo)一一摩天活力城樓頂上的摩天輪,被譽為長春眼,如圖②是其正面的平面圖.已知摩天活力城樓頂AD距地面BC34米,摩天輪⊙O與樓頂AD近似相切,切點為G.測得∠OEF=∠OFE67°,EF27.54米,求摩天輪的最高點到地面BC的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin67°0.92cos67°0.39,tan67°2.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防新冠肺炎,某藥店銷售甲、乙兩種防護(hù)口罩,已知甲口罩每袋的售價比乙口罩多5元,小明從該藥店購買了3袋甲口罩和2袋乙口罩共花費115元.

1)求該藥店甲、乙兩種口罩每袋的售價分別為多少元?

2)根據(jù)消費者需求,藥店決定用不超過8000元購進(jìn)甲、乙兩種口罩共400袋.已知甲口罩每袋的進(jìn)價為22.2元,乙口罩每袋的進(jìn)價為17.8元,要使藥店獲利最大,應(yīng)該購進(jìn)甲、乙兩種口罩各多少袋,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,若將△ABC繞點B順時針旋轉(zhuǎn)60°,點A的對應(yīng)點為點A′,點C的對應(yīng)點為點C′,點DA′B的中點,連接AD.則點A的運動路徑與線段AD、AD圍成的陰影部分面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點Am,3)、B6,n)在雙曲線yx0)上,直線yax+b經(jīng)過AB兩點,并與x軸、y軸分別相交手C、D兩點,已知SOAB8

1)求雙曲線y的函數(shù)表達(dá)式;

2)求△COD的周長;

3)直接寫出不等式-axb的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點AA1,A2,A3An都在直線1yx+1上,點B,B1,B2,B3Bn都在x軸上,且AB11,B1A1x軸,A1B21,B2A2x軸,則An的橫坐標(biāo)為_________(用含有n的代數(shù)式表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通達(dá)橋即小店汾河橋,是太原新建成的一座跨汾大橋,也是太原首座懸索橋.橋的主塔由曲線形拱門組成,取意“時代之門”.無人機社團(tuán)的同學(xué)計劃利用無人機設(shè)備測量通達(dá)橋拱門的高度.如圖,他們先將無人機升至距離橋面50米高的點C處,測得橋的拱門最高點A的仰角∠ACF30°,再將無人機從C處豎直向上升高200米到點D處,測得點A的俯角∠ADG45°.已知點AB,C,D,E在同一平面內(nèi),求通達(dá)橋拱門最高點A距離橋面BE的高度AB(結(jié)果保留整數(shù),參考數(shù)據(jù):1.41,1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,分別是邊、上的點,,的周長為6,則正方形的邊長為__________.

查看答案和解析>>

同步練習(xí)冊答案