【題目】如圖所示,在平面直角坐標(biāo)系中,A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C,把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,得到的等腰直角三角形的直角頂點P2017的坐標(biāo)為_____.
【答案】(4033,1)
【解析】
根據(jù)等腰直角三角形的性質(zhì)可找出點P1的坐標(biāo),結(jié)合旋轉(zhuǎn)的性質(zhì)即可找出點P2、P3、P4、P5、…、的坐標(biāo),根據(jù)坐標(biāo)的變化即可找出變化規(guī)律“P2n+1(4n+1,1),P2n+2(4n+3,﹣1)(n為自然數(shù))”,依此規(guī)律即可得出結(jié)論.
解:∵A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,
∴P1(1,1).
∵把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C1,
∴P2(3,﹣1).
同理可得出:P3(5,1),P4(7,﹣1),P5(9,1),…,
∴P2n+1(4n+1,1),P2n+2(4n+3,﹣1)(n為自然數(shù)).
∵2017=2×1008+1,
∴P2017(4033,1).
故答案為:(4033,1)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中,有一個格點三角形ABC.(注:頂點均在網(wǎng)格線交點處的三角形稱為格點三角形.)
(1)△ABC是 三角形(填“銳角”、“直角”或“鈍角”);
(2)若P、Q分別為線段AB、BC上的動點,當(dāng)PC+PQ取得最小值時,
① 在網(wǎng)格中用無刻度的直尺,畫出線段PC、PQ.(請保留作圖痕跡.)
② 直接寫出PC+PQ的最小值: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是長春新地標(biāo)一一摩天活力城樓頂上的摩天輪,被譽為“長春眼”,如圖②是其正面的平面圖.已知摩天活力城樓頂AD距地面BC為34米,摩天輪⊙O與樓頂AD近似相切,切點為G.測得∠OEF=∠OFE=67°,EF=27.54米,求摩天輪的最高點到地面BC的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin67°=0.92,cos67°0.39,tan67°=2.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防新冠肺炎,某藥店銷售甲、乙兩種防護(hù)口罩,已知甲口罩每袋的售價比乙口罩多5元,小明從該藥店購買了3袋甲口罩和2袋乙口罩共花費115元.
(1)求該藥店甲、乙兩種口罩每袋的售價分別為多少元?
(2)根據(jù)消費者需求,藥店決定用不超過8000元購進(jìn)甲、乙兩種口罩共400袋.已知甲口罩每袋的進(jìn)價為22.2元,乙口罩每袋的進(jìn)價為17.8元,要使藥店獲利最大,應(yīng)該購進(jìn)甲、乙兩種口罩各多少袋,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,若將△ABC繞點B順時針旋轉(zhuǎn)60°,點A的對應(yīng)點為點A′,點C的對應(yīng)點為點C′,點D為A′B的中點,連接AD.則點A的運動路徑與線段AD、A′D圍成的陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(m,3)、B(6,n)在雙曲線y=(x>0)上,直線y=ax+b經(jīng)過A、B兩點,并與x軸、y軸分別相交手C、D兩點,已知S△OAB=8.
(1)求雙曲線y=的函數(shù)表達(dá)式;
(2)求△COD的周長;
(3)直接寫出不等式-ax>b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,A1,A2,A3…An都在直線1:y=x+1上,點B,B1,B2,B3…Bn都在x軸上,且AB1⊥1,B1A1⊥x軸,A1B2⊥1,B2A2⊥x軸,則An的橫坐標(biāo)為_________(用含有n的代數(shù)式表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通達(dá)橋即小店汾河橋,是太原新建成的一座跨汾大橋,也是太原首座懸索橋.橋的主塔由曲線形拱門組成,取意“時代之門”.無人機社團(tuán)的同學(xué)計劃利用無人機設(shè)備測量通達(dá)橋拱門的高度.如圖,他們先將無人機升至距離橋面50米高的點C處,測得橋的拱門最高點A的仰角∠ACF為30°,再將無人機從C處豎直向上升高200米到點D處,測得點A的俯角∠ADG為45°.已知點A,B,C,D,E在同一平面內(nèi),求通達(dá)橋拱門最高點A距離橋面BE的高度AB.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com