【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊上的中點(diǎn),過D點(diǎn)作DEDF,交AB于點(diǎn)E,交BC于點(diǎn)F,若AE=8,FC=6.

1)求EF的長(zhǎng).

2)求四邊形BEDF的面積.

【答案】1EF的長(zhǎng)為10;(2S四邊形BEDF=49.

【解析】

1)首先連接BD,由已知等腰直角三角形ABC,可推出BDACBD=CD=AD,∠ABD=45°再由DEDF,可推出∠FDC=EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,從而得出BE=FC=6,那么AB=14,則BC=14,BF=8,再根據(jù)勾股定理求出EF的長(zhǎng);

2)由△EDB≌△FDC,可得S四邊形BEDF= SCDF+ SBDF=SBDC,再由DAC中點(diǎn),可得SBDC=SABC,由此即可求得答案.

1)連接BD,

∵等腰直角三角形ABC中,DAC邊上中點(diǎn),

BDAC,BD=CD=AD,∠ABD=45°,

∴∠C=45°,

∴∠ABD=C,

又∵DEDF,

∴∠FDC+BDF=EDB+BDF

∴∠FDC=EDB,

在△EDB與△FDC中,

,

∴△EDB≌△FDCASA),

BE=FC=6,

AB=AE+BE=8+6=14,則BC=14

BF=BC-CF=14-6=8,

RtEBF中, EF2=BE2+BF2=62+82,

EF=10,

答:EF的長(zhǎng)為10;

2)∵△EDB≌△FDC

S四邊形BEDF=SBDE+SBDF=SCDF+ SBDF=SBDC,

DAC中點(diǎn),

SBDC=SABC

∵SABC=ABBC,AB=BC=14,

∴SABC==98,

∴S四邊形BEDF=49.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處.

(1)如圖1,若折痕,且,求矩形ABCD的周長(zhǎng);

(2)如圖2,在AD邊上截取DG=CF,連接GE,BD,相交于點(diǎn)H,求證:BDGE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)

徐老師給愛好學(xué)習(xí)的小敏和小捷提出這樣一個(gè)問題:

如圖1△ABC中,∠B=2∠C,AD∠BAC的平分線.求證:AB+BD=AC

小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2

小捷的證明思路是:延長(zhǎng)CB至點(diǎn)E,使BE=AB,連接AE. 可以證得:AE=DE(如圖3

請(qǐng)你任意選擇一種思路繼續(xù)完成下一步的證明.

(變式探究)

“AD∠BAC的平分線改成“ADBC邊上的高,其它條件不變.(如圖4),AB+BD=AC成立嗎?若成立,請(qǐng)證明;若不成立,寫出你的正確結(jié)論,并說明理由.

(遷移拓展)

△ABC中,∠B=2∠C. 求證:AC2=AB2+ABBC. (如圖5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在圖(1)中編號(hào)①②③④的四個(gè)三角形中,關(guān)于y軸對(duì)稱的兩個(gè)三角形的編號(hào)為_________;關(guān)于x軸對(duì)稱的兩個(gè)三角形的編號(hào)為___________;

2)在圖(2)中,畫出ΔABC關(guān)于x軸對(duì)稱的圖形ΔA1B1C1。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若點(diǎn)是線段上的動(dòng)點(diǎn)(不與,重合),分別以、為邊向線段的同一側(cè)作等邊和等邊.

1)圖1中,連接、,相交于點(diǎn),設(shè),那么

2)如圖2,若點(diǎn)固定,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于),此時(shí)的大小是否發(fā)生變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校七年級(jí)學(xué)生的英語(yǔ)口語(yǔ)水平,隨機(jī)抽取該年級(jí)部分學(xué)生進(jìn)行英語(yǔ)口語(yǔ)測(cè)試,學(xué)生的測(cè)試成績(jī)按標(biāo)準(zhǔn)定為 A、B、C、D 四個(gè)等級(jí),并把測(cè)試成績(jī)繪成如圖所示的兩個(gè)統(tǒng)計(jì)圖表.

七年級(jí)英語(yǔ)口語(yǔ)測(cè)試成績(jī)統(tǒng)計(jì)表

成績(jī)x(分)

等級(jí)

人數(shù)

x≥90

A

12

75≤x<90

B

m

60≤x<75

C

n

x<60

D

9

請(qǐng)根據(jù)所給信息,解答下列問題:

(1)本次被抽取參加英語(yǔ)口語(yǔ)測(cè)試的學(xué)生共有多少人?

(2)求扇形統(tǒng)計(jì)圖中 C 級(jí)的圓心角度數(shù);

(3)若該校七年級(jí)共有學(xué)生 640人,根據(jù)抽樣結(jié)課,估計(jì)英語(yǔ)口語(yǔ)達(dá)到 B級(jí)以上(包括B 級(jí))的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.

(1)求AB的長(zhǎng)和點(diǎn)C的坐標(biāo);

(2)求直線CD的解析式;

(3)y軸上是否存在一點(diǎn)P,使得SPAB=,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案