【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.

(1)求AB的長(zhǎng)和點(diǎn)C的坐標(biāo);

(2)求直線CD的解析式;

(3)y軸上是否存在一點(diǎn)P,使得SPAB=,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)AB=5;C(8,0).(2)y=x﹣6;(3)P點(diǎn)的坐標(biāo)為(0,12)或(0,﹣4).

【解析】

(1)先求得點(diǎn)A和點(diǎn)B的坐標(biāo),則可得到OA、OB的長(zhǎng),然后依據(jù)勾股定理可求得AB的長(zhǎng),然后依據(jù)翻折的性質(zhì)可得到AC的長(zhǎng),于是可求得OC的長(zhǎng),從而可得到點(diǎn)C的坐標(biāo);

(2)設(shè)OD=x,則CD=DB=x+4.,RtOCD中,依據(jù)勾股定理可求得x的值,從而可得到點(diǎn)D(0,﹣6),然后利用待定系數(shù)法求解即可;

(3)先求得SPAB的值,然后依據(jù)三角形的面積公式可求得BP的長(zhǎng),從而可得到點(diǎn)P的坐標(biāo).

解:(1)令x=0得:y=4,

B(0,4).

OB=4

y=0得:0=﹣x+4,解得:x=3,

A(3,0).

OA=3.

RtOAB中,AB==5.

OC=OA+AC=3+5=8,

C(8,0).

(2)設(shè)OD=x,則CD=DB=x+4.

RtOCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,

D(0,﹣6).

設(shè)CD的解析式為y=kx﹣6,將C(8,0)代入得:8k﹣6=0,解得:k=,

∴直線CD的解析式為y=x﹣6.

(3)SPAB=,

SPAB=××6×8=12.

∵點(diǎn)Py軸上,SPAB=12,

BPOA=12,即×3BP=12,解得:BP=8,

P點(diǎn)的坐標(biāo)為(0,12)或(0,﹣4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

為了加強(qiáng)學(xué)生課外閱讀,開闊視野,某校開展了書香校園,從我做起的主題活動(dòng).學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:

請(qǐng)根據(jù)圖表信息回答下列問題:

(1)頻數(shù)分布表中的 ;

(2)將頻數(shù)分布直方圖補(bǔ)充完整;

(3)學(xué)校將每周課外閱讀時(shí)間在小時(shí)以上的學(xué)生評(píng)為閱讀之星,請(qǐng)你估計(jì)該校名學(xué)生中評(píng)為閱讀之星的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)舉辦的“中國(guó)詩詞大會(huì)”節(jié)目受到中學(xué)生的廣泛關(guān)注.某中學(xué)為了解該校九年級(jí)學(xué)生對(duì)觀看“中國(guó)詩詞大會(huì)”節(jié)目的喜愛程度,對(duì)該校九年級(jí)部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計(jì)圖.在條形圖中,從左向右依次為:A 級(jí)(非常喜歡),B 級(jí)(較喜歡),C 級(jí)(一般),D 級(jí)(不喜歡).請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 , 表示“D級(jí)(不喜歡)”的扇形的圓心角為°;
(2)若該校九年級(jí)有200名學(xué)生.請(qǐng)你估計(jì)該年級(jí)觀看“中國(guó)詩詞大會(huì)”節(jié)目B 級(jí)(較喜歡)的學(xué)生人數(shù);
(3)若從本次調(diào)查中的A級(jí)(非常喜歡)的5名學(xué)生中,選出2名去參加廣州市中學(xué)生詩詞大會(huì)比賽,已知A級(jí)學(xué)生中男生有3名,請(qǐng)用“列表”或“畫樹狀圖”的方法求出所選出的2名學(xué)生中至少有1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個(gè)多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個(gè)正多邊形中∠α的變化情況,解答下列問題.

(1)將下面的表格補(bǔ)充完整:

正多邊形的邊數(shù)

3

4

5

6

……

18

α的度數(shù)

   

   

   

   

……

   

(2)根據(jù)規(guī)律,是否存在一個(gè)正n邊形,使其中的∠α=20°?若存在,直接寫出n的值;若不存在,請(qǐng)說明理由.

(3)根據(jù)規(guī)律,是否存在一個(gè)正n邊形,使其中的∠α=21°?若存在,直接寫出n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在Rt△ABC中,斜邊AB=10,sinA= ,點(diǎn)P為邊AB上一動(dòng)點(diǎn)(不與A,B重合),PQ平分∠CPB交邊BC于點(diǎn)Q,QM⊥AB于M,QN⊥CP于N.

(1)當(dāng)AP=CP時(shí),求QP;
(2)若四邊形PMQN為菱形,求CQ;
(3)探究:AP為何值時(shí),四邊形PMQN與△BPQ的面積相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)國(guó)家郵政局公布的數(shù)據(jù)顯示,2016年中國(guó)快遞業(yè)務(wù)量突破313.5億件,同比增長(zhǎng)51.7%,快遞業(yè)務(wù)量位居世界第一,業(yè)內(nèi)人士表示,快遞業(yè)務(wù)連續(xù)6年保持50%以上的高速增長(zhǎng),已成為中國(guó)經(jīng)濟(jì)的一匹“黑馬”,未來中國(guó)快遞業(yè)務(wù)仍將保持快速增長(zhǎng)勢(shì)頭,以下是根據(jù)相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖,請(qǐng)你預(yù)估2017年全國(guó)快遞的業(yè)務(wù)量大約為(精確的0.1)億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M、N分別是正方形ABCD的邊BC、CD上的點(diǎn),已知:∠MAN=30°,AM=AN,△AMN的面積為1.
(1)求∠BAM的度數(shù);
(2)求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF;
(2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正比例函數(shù)y1=k1x(k1>0)與反比例函數(shù)y2= (k2>0)部分圖象如圖所示,則不等式k1x> 的解集在數(shù)軸上表示正確的是(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案