【題目】已知:如圖,在△ABC中,已知AB=AC,∠BAC=90°,D是BC上一點(diǎn),EC⊥BC,CE=BD
求證:(1)△ABD≌△ACE;(2)試判斷△ADE的形狀,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)△ADE為等腰直角三角形,見(jiàn)解析
【解析】
(1)先求出∠B=∠ACB=45°,利用EC⊥BC求出∠ACE=45°,即可根據(jù)SAS證明結(jié)論;
(2)利用(1)中△ABD≌△ACE得到AD=AE,∠BAD=∠CAE,根據(jù)∠BAD+∠DAC=90°求出∠DAE=90°,即可得到結(jié)論.
(1)證明:∵在△ABC中,AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵EC⊥BC,
∴∠ECB=90°
∵∠ACB=45°,
∴∠ACE=∠ECB-∠ACB=90°-45°=45°,
在△ABD和△ACE中
,
∴△ABD≌△ACE;
(2)△ADE為等腰直角三角形,理由如下:
由(1)可知:△ABD≌△ACE
∴AD=AE,∠BAD=∠CAE,
∵∠BAC=90°,
∴∠BAD+∠DAC=90°,
又∵∠BAD=∠CAE,
∴∠CAE+∠DAC=90°,
∴∠DAE=90°,
∴ADE為等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD邊AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),過(guò)點(diǎn)E作EF⊥DE交BC于點(diǎn)F,連接DF.已知AB = 4cm,AD = 2cm,設(shè)A,E兩點(diǎn)間的距離為xcm,△DEF面積為ycm2.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量、分析,得到了x與y的幾組值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;
(4)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)△DEF面積最大時(shí),AE的長(zhǎng)度為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)如圖1,若O為AB的中點(diǎn),以O為圓心,OB為半徑作⊙O交BC于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.
①試說(shuō)明:BD=CD;
②判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)如圖2,若點(diǎn)O沿OB向點(diǎn)B移動(dòng),以O為圓心,以OB為半徑作⊙O與AC相切于點(diǎn)F,與AB相交于點(diǎn)G,與BC相交于點(diǎn)D,DE⊥AC,垂足為E,已知⊙O的半徑長(zhǎng)為4,CE=2,求切線AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,G是BC的中點(diǎn),過(guò)A、D、G三點(diǎn)的圓O與邊AB、CD分別交于點(diǎn)E、點(diǎn)F,給出下列說(shuō)法,其中正確說(shuō)法的個(gè)數(shù)是( 。
(1)AC與BD的交點(diǎn)是圓O的圓心;
(2)AF與DE的交點(diǎn)是圓O的圓心;
(3);
(4)DE>DG,
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,則下圖中共有幾對(duì)全等三角形( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,l1 與 l2 交于點(diǎn) P,l2 與 l3 交于點(diǎn) Q,∠l=104°,∠2=87°,要使得 l1∥l2,下列操作正確的是( )
A. 將 l1 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 14°
B. 將 l1 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 17°
C. 將 l2 繞點(diǎn) Q 顒時(shí)針旋轉(zhuǎn) 11°
D. 將 l2 繞點(diǎn) Q 順時(shí)針旋轉(zhuǎn) 14°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果兩條線段將一個(gè)三角形分成 3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的“三分線”.例如:如圖①,線段、把一個(gè)頂角為的等腰分成了 3個(gè)等腰三角形,則線段、就是等腰的“三分線”.
(1)圖②是一個(gè)頂角為 45°的等腰三角形,在圖中畫(huà)出“三分線”,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù).
(2)如圖③,在邊上取一點(diǎn),令可以分割出第一個(gè)等腰,接著又需要考慮如何將分成2個(gè)等腰三角形,即可畫(huà)出所需要的“三分線”,類比該方法,在圖④中畫(huà)出的“三分線”,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù);
(3)在中,,,.
①畫(huà)出;(尺規(guī)畫(huà)圖,不寫(xiě)作法,保留作圖痕跡)
②畫(huà)出的“三分線”,并做適當(dāng)?shù)臉?biāo)注.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,B(5,2),點(diǎn)D是OA的中點(diǎn),動(dòng)點(diǎn)P在線段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)C向B 運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)在直線CB上是否存在一點(diǎn)Q,使得O、D、Q、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在線段PB上有一點(diǎn)M,且PM=2.5,當(dāng)P運(yùn)動(dòng)多少,四邊形OAMP的周長(zhǎng)最小值為多少,并畫(huà)圖標(biāo)出點(diǎn)M的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com