【題目】如圖,在△ABC中,AB=AC.
(1)如圖1,若O為AB的中點,以O為圓心,OB為半徑作⊙O交BC于點D,過D作DE⊥AC,垂足為E.
①試說明:BD=CD;
②判斷直線DE與⊙O的位置關系,并說明理由.
(2)如圖2,若點O沿OB向點B移動,以O為圓心,以OB為半徑作⊙O與AC相切于點F,與AB相交于點G,與BC相交于點D,DE⊥AC,垂足為E,已知⊙O的半徑長為4,CE=2,求切線AF的長.
【答案】(1)①證明見解析;②直線DE與⊙O相切,理由見解析;(2)AF=3.
【解析】
(1)①連接AD,已知AB是⊙O的直徑,根據直徑所對的圓周角是直角即可得∠ADB=90°,即AD⊥BC;再由等腰三角形三線合一的性質即可證得結論;(2)直線DE與⊙O相切,連接OD,已知AB=AC、OB=OD,根據等腰三角形的性質可得∠ODB=∠B=∠C,即可判定OD∥BC,由DE⊥AC可得DE⊥OD,由此即可判定DE與⊙O相切;(2)根據已知條件易證四邊形ODEF是矩形,即可得OD=EF=4;設AF=x,則AB=AC=x+6,AO =x+2,在Rt△AOF中,利用勾股定理列出方程(x+2)2=x2+42,解方程求得x的值,即可求得AF的長.
(1)①連接AD,
∵AB為⊙O的直徑,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,AD⊥BC,
∴BD=CD;
②直線DE與⊙O相切,
理由:連接OD,
∵AB=AC,OB=OD,
∴∠ODB=∠B=∠C,
∴OD∥BC,
∵DE⊥AC,
∴DE⊥OD,
∴DE與⊙O相切;
(2)由(1)同理得,DE與⊙O相切,
連接OF,
∵EF與⊙O相切,DE⊥AC,
∴∠ODE=∠OFE=∠EDF=90°,即四邊形ODEF是矩形,
∴OD=EF=4,
設AF=x,則AB=AC=x+6,AO=x+6﹣4=x+2,
在Rt△AOF中,
(x+2)2=x2+42,
解得,x=3,
即AF=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線(k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】城市中“打車難”一直是人們關注的一個社會熱點問題.近幾年來,“互聯(lián)網+”戰(zhàn)略與傳統(tǒng)出租車行業(yè)深度融合,“優(yōu)步”、“滴滴出行”等打車軟件就是其中典型的應用,名為“數(shù)據包絡分析”(簡稱DEA)的一種效率評價方法,可以很好地優(yōu)化出租車資源配置,為了解出租車資源的“供需匹配”,北京、上海等城市對每天24個時段的DEA值進行調查,調查發(fā)現(xiàn),DEA值越大,說明匹配度越好.在某一段時間內,北京的DEA值y與時刻t的關系近似滿足函數(shù)關系(a,b,c是常數(shù),且≠0),如圖記錄了3個時刻的數(shù)據,根據函數(shù)模型和所給數(shù)據,當“供需匹配”程度最好時,最接近的時刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請將下面證明中每一步的理由填在括號內.
已知:如圖,D,E,F分別是BC,CA,AB上的點,DE∥BA,DF∥CA.
求證:∠FDE=∠A
證明:∵ DE∥BA( )
∴∠FDE=∠BFD( )
∵DF∥CA( )
∴∠BFD=∠A( )
∴∠FDE=∠A( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:
根據以上信息,整理分析數(shù)據如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D兩點在半圓上,CE⊥AB于E,DF⊥AB于F,點P是AB上的一個動點,已知AB=10,CE=4,DF=3,則PC+PD的最小值是( 。
A. 7 B. 7 C. 10 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,已知AB=AC,∠BAC=90°,D是BC上一點,EC⊥BC,CE=BD
求證:(1)△ABD≌△ACE;(2)試判斷△ADE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,平面直角坐標的原點是等邊三角形的中心,A(0,1),把△ABC繞點 O 順時針旋轉,每秒旋轉 60°,則第 2018 秒時,點 A 的坐標為( )
A. (0,1) B. (﹣,﹣) C. (,﹣) D. (,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b與坐標軸交于C,D兩點,直線AB與坐標軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).
(1)求點A,C的坐標;
(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經過點E,求k的值;
(3)在(2)的條件下,點M在直線CD上,坐標平面內是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com