精英家教網 > 初中數學 > 題目詳情

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數).其中正確結論的個數是( 。

A. 4個 B. 3個 C. 2個 D. 1個

【答案】D

【解析】①因為二次函數的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標大于﹣3,小于﹣2,

所以﹣=﹣1,可得b=2a,

當x=﹣3時,y<0,

即9a﹣3b+c<0,

9a﹣6a+c<0,

3a+c<0,

∵a<0,

∴4a+c<0,

所以①選項結論正確;

②∵拋物線的對稱軸是直線x=﹣1,

∴y=a﹣b+c的值最大,

即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,

∴am2+bm<a﹣b,

m(am+b)+b<a,

所以此選項結論不正確;

③ax2+(b﹣1)x+c=0,

△=(b﹣1)2﹣4ac,

∵a<0,c>0,

∴ac<0,

∴﹣4ac>0,

∵(b﹣1)2≥0,

∴△>0,

∴關于x的一元二次方程ax2+(b﹣1)x+c=0有實數根;

④由圖象得:當x>﹣1時,y隨x的增大而減小,

∵當k為常數時,0≤k2≤k2+1,

∴當x=k2的值大于x=k2+1的函數值,

即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,

ak4+bk2>a(k2+1)2+b(k2+1),

所以此選項結論不正確;

所以正確結論的個數是1個,

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從揚州乘“K”字頭列車A、“T”字頭列車B都可直達南京,已知A車的平均速度為60km/h,B車的平均速度為A車的1.5倍,且走完全程B車所需時間比A車少45分鐘.

1)求揚州至南京的鐵路里程;

2)若兩車以各自的平均速度分別從揚州、南京同時相向而行,問經過多少時間兩車相距15km?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A,B,C,DO上,AB=AC,ADBC相交于點E,AE=ED,延長DB到點F,使FB=BD,連接AF.

(1)證明:△BDE∽△FDA;

(2)試判斷直線AF⊙O的位置關系,并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在四邊形中,分別是的中點,,則的長是___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD 中,對角線AC,BD交于點O,以 ADOD為鄰邊作平行四邊形ADOE,連接BE.

(1) 求證:四邊形AOBE是菱形;

(2) 若∠EAO+DCO=180°DC=2,求四邊形ADOE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AOB為等腰三角形,頂點A的坐標(2,),底邊OBx軸上.將AOB繞點B按順時針方向旋轉一定角度后得A′O′B,點A的對應點A′x軸上,則點O′的坐標為( 。

A. , B. C. , D. ,4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點是等邊內一點,,將繞點順時針方向旋轉得到,連接.

1)當時,判斷的形狀,并說明理由;

2)求的度數;

3)請你探究:當為多少度時,是等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=x2+bx+c經過點A(-1,t),B(3,t),與y軸交于點C(0,-1).一次函數y=x+n的圖象經過拋物線的頂點D

)求拋物線的表達式.

)求一次函數的表達式.

)將直線繞其與軸的交點旋轉,使當時,直線總位于拋物線的下方,請結合函數圖象,求的取值范圍.

查看答案和解析>>

同步練習冊答案