【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次錘子、剪刀、布游戲,下列命題中錯誤的是( 。

A. 紅紅不是勝就是輸,所以紅紅勝的概率為

B. 紅紅勝或娜娜勝的概率相等

C. 兩人出相同手勢的概率為

D. 娜娜勝的概率和兩人出相同手勢的概率一樣

【答案】A

【解析】試題解析:試題解析:紅紅和娜娜玩石頭、剪刀、布游戲,所有可能出現(xiàn)的結(jié)果列表如下:

紅紅

娜娜

石頭

剪刀

石頭

(石頭,石頭)

(石頭,剪刀)

(石頭,布)

剪刀

(剪刀,石頭)

(剪刀,剪刀)

(剪刀,布)

(布,石頭)

(布,剪刀)

(布,布)

由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).

因此,紅紅和娜娜兩人出相同手勢的概率為,兩人獲勝的概率都為,

紅紅不是勝就是輸,所以紅紅勝的概率為,錯誤,故選項A符合題意,

故選項B,C,D不合題意;

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一般地,任何一個無限循環(huán)小數(shù)都可以寫成分數(shù)形式,現(xiàn)以無限循環(huán)小數(shù)0.為例進行討論:設(shè)0.=x,由0.=0.777…可知,10xx=7.0.=7,即10xx=7.解方程,得x=.于是,得0. = .則0.=____________;0.=____________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7分)小軍同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真閱讀下面的材料,完成有關(guān)問題.

材料:在學習絕對值時,老師教過我們絕對值的幾何含義,如|5﹣3|表示5、3在數(shù)軸上對應(yīng)的兩點之間的距離;|5+3|=|5﹣﹣3|,所以|5+3|表示5﹣3在數(shù)軸上對應(yīng)的兩點之間的距離;|5|=|5﹣0|,所以|5|表示5在數(shù)軸上對應(yīng)的點到原點的距離.一般地,點A、B在數(shù)軸上分別表示有理數(shù)a、b,那么A、B之間的距離可表示為|a﹣b|

問題(1):點A、B、C在數(shù)軸上分別表示有理數(shù)﹣5、﹣1、3,那么AB的距離是      ,

AC的距離是      . (直接填最后結(jié)果).

問題(2):點A、B、C在數(shù)軸上分別表示有理數(shù)x﹣2、1,那么AB的距離與AC的距離之和可表示為        (用含絕對值的式子表示).

問題(3):利用數(shù)軸探究:①找出滿足|x﹣3|+|x+1|=6x的所有值是        ;

②設(shè)|x﹣3|+|x+1|=p,當x的值取在不小于﹣1且不大于3的范圍時,p的值是不變的,而且是p的最小值,這個最小值是      ;當x的值取在       的范圍時,|x|+|x﹣2|的最小值是      

問題(4):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:求1+2+22+23+…+22017+22018的值

解:設(shè)S=1+2+22+23+…+22017+22018,將等式兩邊同時乘以2得:2S=2+22+23+…+22017+22018+22019,

將下式減去上式得2SS=22019﹣1,即S=22019﹣1

請你根據(jù)材料中的方法計算下列各式:

(1)1+2+22+23+…+299+2100

(2)1+++…+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從兩地同時出發(fā),甲車勻速前往地,到達地立即以另一速度按原路勻速返回到地;乙車勻速前往地,設(shè)甲、乙兩車距地的路程為(千米),甲車行駛的時間為(小時)之間的函數(shù)圖象如圖所示:

1)甲車從地開往地時的速度是_________;乙車從地開往地時的速度是______.

2)圖中點的坐標是(______,______);

3)求甲車返回時之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD60°,ACBD交于點O,ECD延長線上的一點,且CDDE,連接BE分別交AC、AD于點FG,連接OG,則下列結(jié)論中一定成立的是( )

OGAB;②與△EGD全等的三角形共有5個;③S四邊形ODGFSABF;④由點A、BD、E構(gòu)成的四邊形是菱形.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著“一帶一路”的不斷建設(shè)與深化,我國不少知名企業(yè)都積極拓展海外市場,參與投資經(jīng)營.某著名手機公司在某國經(jīng)銷某種型號的手機,受該國政府經(jīng)濟政策與國民購買力雙重影響,手機價格不斷下降.分公司在該國某城市的一家手機銷售門店,今年5月份的手機售價比去年同期每臺降價1000元,若賣出同樣多的手機,去年銷售額可達10萬元,今年銷售額只有8萬元.

(1)今年5月份每臺手機售價多少元?

(2)為增加收入,分公司決定拓展產(chǎn)品線,增加經(jīng)銷某種新型筆記本電腦.已知手機每臺成本為3500元,筆記本電腦每臺成本為3000元,分公司預(yù)計用不少于4.8萬元的成本資金少量試生產(chǎn)這兩種產(chǎn)品共15臺,但因資金所限不能超過5萬元,共有幾種生產(chǎn)方案?

(3)如果筆記本電腦每臺售價3800元,現(xiàn)為打開筆記本電腦的銷路,公司決定每售出1臺筆記本電腦,就返還顧客現(xiàn)金a元,要使(2)中各方案獲利最大,a的值應(yīng)為多少?最大利潤多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段ACBC在同一直線上,AC8cmBC3cm,則線段AC的中點和BC中點之間的距離是(  )

A.5.5cmB.2.5cm

C.4cmD.5.5cm2.5cm

查看答案和解析>>

同步練習冊答案