【題目】如圖,已知點(diǎn)A、B分別是反比例函數(shù)y= (x>0),y= (x<0)的圖象上的點(diǎn),且,∠AOB=90°,則 的值為(
A.4
B.
C.2
D.

【答案】C
【解析】解:過點(diǎn)A作AE⊥x軸于點(diǎn)A,過點(diǎn)B作BF⊥x軸于點(diǎn)B,如圖所示.
∵∠FOB+∠AOB+∠AOE=180°,∠AOB=90°,∠FOB+∠OBF=90°,
∴∠AOE=∠OBF.
又∵∠AEO=∠OFB=90°,
∴△AOE∽△OBF,
= = =4,
的值為2.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解比例系數(shù)k的幾何意義的相關(guān)知識,掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ACDBCE中,AC=BC,AD=BE,CD=CE,ACE=55°,BCD=155°,ADBE相交于點(diǎn)P,則∠BPD的度數(shù)為(

A. 120° B. 125° C. 130° D. 155°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班去體育用品商店購買羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店說:“羽毛球拍和羽毛球都打9折優(yōu)惠”,乙商店說:“買一副羽毛球拍贈2只羽毛球”.

(1)該班如果買2副羽毛球拍和20只羽毛球,問在甲、乙兩家商店各需花多少錢?

(2)該班如果準(zhǔn)備花90元錢全部用于買2副羽毛球拍和若干只羽毛球,請問到哪家商店購買更合算?

(3)該班如果必須買2副羽毛球拍,問當(dāng)買多少只羽毛球時到兩家商店購買同樣合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在公路上勻速行駛,下表記錄的是汽車在加滿油后油箱內(nèi)余油量y(升)與行駛時間x(時)之間的關(guān)系:

行駛時間x(時)

0

1

2

2.5

余油量y(升)

100

80

60

50

(1)小明分析上表中所給的數(shù)據(jù)發(fā)現(xiàn)x,y成一次函數(shù)關(guān)系,試求出它們之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍);

(2)求汽車行駛4.2小時后,油箱內(nèi)余油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論: ①△AED≌△DFB;②S四邊形BCDG= CG2;③若AF=2DF,則BG=6GF.
其中正確的結(jié)論(

A.只有①②
B.只有①③
C.只有②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點(diǎn)E,連接DE,作EF⊥DE,交直線AB于點(diǎn)F.
(1)若點(diǎn)F與B重合,求CE的長;
(2)若點(diǎn)F在線段AB上,且AF=CE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A和點(diǎn)F,點(diǎn)B和點(diǎn)E分別是反比例函數(shù)y= 圖象在第一象限和第三象限上的點(diǎn),過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,垂足分別為點(diǎn)C、D,CD=6,且AF=FC,DE=BE,已知四邊形ADCF的面積是四邊形BCDE的面積的2倍,則OC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地相距450千米,甲、乙兩車分別從AB兩地同時出發(fā),相向而行.已知甲車的速度為100千米/時,乙車的速度為80千米/時,___________小時后兩車相距30千米.

【答案】

【解析】

應(yīng)該有兩種情況,第一次應(yīng)該還沒相遇時相距30千米,第二次應(yīng)該是相遇后交錯離開相距30千米,根據(jù)路程=速度×時間,可列方程求解.

設(shè)第一次相距30千米時,經(jīng)過了x小時

由題意,得(100+80)x=450-30,

解得x=;

設(shè)第二次相距30千米時,經(jīng)過了y小時

由題意,得(100+80)y=450+30,

解得y=,

故經(jīng)過小時或小時相距30千米.

故答案為

【點(diǎn)睛】

本題考查理解題意能力,關(guān)鍵知道相距30千米時有兩次以及知道路程=速度×時間,以路程做為等量關(guān)系可列方程求解.

型】填空
結(jié)束】
18

【題目】如圖,一個長方體的表面展開圖中四邊形ABCD是正方形(正方形的四個角都是直角、四條邊都相等),則根據(jù)圖中數(shù)據(jù)可得原長方體的體積是_________cm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一個六角星的紙板,其中六個銳角都為60°,六個鈍角都為120°,每條邊都相等,現(xiàn)將該紙板按圖(2)切割,并無縫隙無重疊地拼成矩形ABCD.若六角星紙板的面積為9 cm2 , 則矩形ABCD的周長為(
A.18cm
B.8 cm
C.(2 +6)cm
D.(6 +6)cm

查看答案和解析>>

同步練習(xí)冊答案