【題目】如圖,對(duì)折矩形紙片ABCD使AD與BC重合,得到折痕MN,再把紙片展平.E是AD上一點(diǎn),將△ABE沿BE折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在MN上.若CD=5,則BE的長是_____.
【答案】
【解析】
在Rt△A'BM中,利用軸對(duì)稱的性質(zhì)與銳角三角函數(shù)求出∠BA′M=30°,再證明∠ABE=30°即可解決問題.
解:∵將矩形紙片ABCD對(duì)折一次,使邊AD與BC重合,得到折痕MN,
∴AB=2BM,∠A′MB=90°,MN∥BC.
∵將△ABE沿BE折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在MN上.
∴A′B=AB=2BM.
在Rt△A′MB中,∵∠A′MB=90°,
∴sin∠MA′B= =,
∴∠MA′B=30°,
∵MN∥BC,
∴∠CBA′=∠MA′B=30°,
∵∠ABC=90°, ∴∠ABA′=60°,
∴∠ABE=∠EBA′=30°,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,,點(diǎn)E為BC的中點(diǎn),以CD為直徑在正方形外部作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接,圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),,DE交AC于點(diǎn)E,且.下列結(jié)論:①∽;②當(dāng)時(shí),與全等;③為直角三角形時(shí),BD等于8或.其中正確的有__________.(選填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批成本為每件40元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(jià)(元之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量與銷售單價(jià)之間的函數(shù)關(guān)系式;
(2)若商店要使銷售該商品每天獲得的利潤等于1000元,每天的銷售量應(yīng)為多少件?
(3)若商店按單價(jià)不低于成本價(jià),且不高于65元銷售,則銷售單價(jià)定為多少元時(shí),才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校7名學(xué)生在某次測(cè)量體溫(單位:℃)時(shí)得到如下數(shù)據(jù):36.3,36.4,36.5,36.7,36.6,36.5,36.5,對(duì)這組數(shù)據(jù)描述正確的是( 。
A.眾數(shù)是36.5B.中位數(shù)是36.7
C.平均數(shù)是36.6D.方差是0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷售甲,乙兩種型號(hào)水杯,進(jìn)價(jià)和售價(jià)均保持不變,其中甲種型號(hào)水杯進(jìn)價(jià)為25元/個(gè),乙種型號(hào)水杯進(jìn)價(jià)為45元/個(gè),下表是前兩月兩種型號(hào)水杯的銷售情況:
時(shí)間 | 銷售數(shù)量(個(gè)) | 銷售收入(元)(銷售收入=售價(jià)×銷售數(shù)量) | |
甲種型號(hào) | 乙種型號(hào) | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號(hào)水杯的售價(jià);
(2)第三月超市計(jì)劃再購進(jìn)甲、乙兩種型號(hào)水杯共80個(gè),這批水杯進(jìn)貨的預(yù)算成本不超過2600元,且甲種型號(hào)水杯最多購進(jìn)55個(gè),在80個(gè)水杯全部售完的情況下設(shè)購進(jìn)甲種號(hào)水杯a個(gè),利潤為w元,寫出w與a的函數(shù)關(guān)系式,并求出第三月的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在BC邊上,連接AE,∠DAE的平分線AG與CD邊交于點(diǎn)G,與BC的延長線交于點(diǎn)F.設(shè)=λ(λ>0).
(1)若AB=2,λ=1,求線段CF的長.
(2)連接EG,若EG⊥AF,
①求證:點(diǎn)G為CD邊的中點(diǎn).
②求λ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過A (0,3),B (4,3)兩點(diǎn),與x軸交于點(diǎn)E,F,以AB為邊作矩形ABCD,其中CD邊經(jīng)過拋物線的項(xiàng)點(diǎn)M,點(diǎn)P是拋物線上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過點(diǎn)P作y軸的平行線1與直線AB交于點(diǎn)G,與直線BD交于點(diǎn)H,連接AF交直線BD于點(diǎn)N.
(1)求該拋物線的解析式以及頂點(diǎn)M的坐標(biāo);
(2)當(dāng)線段PH=2GH時(shí),求點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P,使得以點(diǎn)P,E,N,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會(huì)吉祥物“冰墩墩”以熊貓為原型進(jìn)行設(shè)計(jì)創(chuàng)作,北京冬殘奧會(huì)吉祥物“雪容融”則以中國標(biāo)志性符號(hào)的燈籠為創(chuàng)意進(jìn)行設(shè)計(jì)創(chuàng)作“冰墩墩”和“雪容融”是一個(gè)非常完美的搭:配和組合,是中國文化和奧林匹克精神又一次完美的結(jié)合莉莉有“冰墩墩”和“雪容融”的紀(jì)念郵票各2張(如圖),這4張郵票背面完全相同,莉莉想給好友小婷和小華各送一張紀(jì)念郵票,她先讓小婷從這4張郵票中隨機(jī)抽取一張,然后,再讓小華從剩下的3張中隨機(jī)抽取一張.
(1)小婷抽到“冰墩墩”的紀(jì)念郵票的概率是__________.
(2)利用樹狀圖或列表法求小婷和小華均抽到“雪容融”的紀(jì)念郵票的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com