【題目】如圖,在ABC中,∠BAC=90°,ADBC,垂足為D

1)求作∠ABC的平分線,分別交AD,ACP,Q兩點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

2)在(1)的基礎(chǔ)上,過點PPEACBC邊于E,聯(lián)結(jié)EQ,則四邊形APEQ是什么特殊四邊形?證明你的結(jié)論.

【答案】(1)見解析;(2)四邊形APEQ是菱形.理由見解析.

【解析】

1)利用尺規(guī)作出∠ABC的角平分線即可.

2)利用全等三角形的性質(zhì)證明PA=PE,再證明AP=AQ,即可解決問題.

解:(1)如圖,射線BQ即為所求.

2)結(jié)論:四邊形APEQ是菱形.

理由:ADBC,

∴∠ADB=90°,

∵∠BAC=90°

∴∠ABD+∠BAD=90°ABD+∠C=90°,

∴∠BAD=∠C,

PEAC,

∴∠PEB=∠C,

BAP=∠BEP,

BP=BPABP=∠EBP,

∴△ABP≌△EBPAAS),

PA=PE,

∵∠AQP=∠QBC+∠CAPQ=∠ABP+∠BAP,

∴∠APQ=∠AQP

AP=AQ

PE=AQ,

PEAQ,

四邊形APEQ是平行四邊形,

AP=AQ,

四邊形APEQ是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(1)班全班50名同學(xué)組成五個不同的興趣愛好小組,每人都參加且只能參加一個小組,統(tǒng)計(不完全)人數(shù)如下表:

編號

人數(shù)

15

20

10

已知前面兩個小組的人數(shù)之比是

解答下列問題:

1 

2)補全條形統(tǒng)計圖:

3)若從第一組和第五組中任選兩名同學(xué),求這兩名同學(xué)是同一組的概率.(用樹狀圖或列表把所有可能都列出來)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù),下列說法錯誤的是(  )

A. 函數(shù)圖象位于第一、三象限

B. 函數(shù)值yx的增大而減小

C. A-1,y1)、B1,y2)、C2,y3)是圖象上三個點,則y1y3y2

D. P為圖象上任意一點,過PPQy軸于Q,則OPQ的面積是定值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,點邊上的一個動點(點與點不重合),連接,過點于點,交于點

1)求證:;

2)如圖2,當(dāng)點運動到中點時,連接,求證:;

3)如圖3,在(2)的條件下,過點于點,分別交于點,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】襄陽市某農(nóng)谷生態(tài)園響應(yīng)國家發(fā)展有機農(nóng)業(yè)政策,大力種植有機蔬菜.某超市看好甲、乙兩種有機蔬菜的市場價值,經(jīng)調(diào)查,這兩種蔬菜的進價和售價如下表所示:

有機蔬菜種類

進價(元/

售價(元/

16

18

1)該超市購進甲種蔬菜10和乙種蔬菜5需要170元;購進甲種蔬菜6和乙種蔬菜10需要200元.求,的值;

2)該超市決定每天購進甲、乙兩種蔬菜共100進行銷售,其中甲種蔬菜的數(shù)量不少于20,且不大于70.實際銷售時,由于多種因素的影響,甲種蔬菜超過60的部分,當(dāng)天需要打5折才能售完,乙種蔬菜能按售價賣完.求超市當(dāng)天售完這兩種蔬菜獲得的利潤額(元)與購進甲種蔬菜的數(shù)量)之間的函數(shù)關(guān)系式,并寫出的取值范圍;

3)在(2)的條件下,超市在獲得的利潤額(元)取得最大值時,決定售出的甲種蔬菜每千克捐出元,乙種蔬菜每千克捐出元給當(dāng)?shù)馗@海粢WC捐款后的盈利率不低于20%,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3的圖象經(jīng)過點A1,0),B3,0),交y軸于點C,頂點是D

1)求拋物線的表達式和頂點D的坐標;

2)在x軸上取點F,在拋物線上取點E,使以點C、D、E、F為頂點的四邊形是平行四邊形,求點E的坐標;

3)將此拋物線沿著過點(0,2)且垂直于y軸的直線翻折,E為所得新拋物線x軸上方一動點,過Ex軸的垂線,交x軸于G,交直線ly=-x-1于點F,以EF為直徑作圓在直線l上截得弦MN,求弦MN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點在反比例函數(shù)的圖象上,點的延長線上,軸,垂足為,與反比例函數(shù)的圖象相交于點,連接,

1)求該反比例函數(shù)的解析式;

2)若,設(shè)點的坐標為,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校準備成立四個活動小組:.聲樂,.體育,.舞蹈,.書畫,為了解學(xué)生對四個活動小組的喜愛情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生從中必須選擇而且只能選擇一個小組,根據(jù)調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計圖.

請結(jié)合圖中所給信息,解答下列問題:

1)本次抽樣調(diào)查共抽查了   名學(xué)生,扇形統(tǒng)計圖中的值是   ;

2)請補全條形統(tǒng)計圖;

3)喜愛書畫的學(xué)生中有兩名男生和兩名女生表現(xiàn)特別優(yōu)秀,現(xiàn)從這4人中隨機選取兩人參加比賽,請用列表或畫樹狀圖的方法求出所選的兩人恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC與△DEF都是等腰直角三角形,ACB=EDF=90°,且點DAB邊上,AB、EF的中點均為O,連結(jié)BF、CDCO,顯然點C, F, O在同一條直線上,可以證明△BOF≌△COD,則BF=CD,

解決問題

(1)將圖①中的RtDEF繞點O旋轉(zhuǎn)得到圖②,猜想此時線段BFCD的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BFCD之間的數(shù)量關(guān)系;

(3)如圖④,若△ABC與△DEF都是等腰三角形,ABEF的中點均為0,且頂角∠ACB=EDF=α,請直接寫出 的值(用含α的式子表示出來)

查看答案和解析>>

同步練習(xí)冊答案