【題目】如圖,點C,D在線段AB上,△PCD是等邊三角形.
(1)當AC,CD,DB滿足怎樣的關系時,△ACP∽△PDB?
(2)當△ACP∽△PDB時,求∠APB的度數.
【答案】(1) CD2=AC·DB時,△ACP∽△PDB.
(2) 120°.
【解析】試題分析:(1)由△PCD是等邊三角形可得∠ACP=∠PDB=120°,當=,即=,即當CD2=AC·DB時,△ACP∽△PDB;(2)由△ACP∽△PDB可得∠A=∠DPB,所以∠APB=∠APC+∠CPD+∠DPB=∠APC+∠CPD+∠A=∠PCD+∠CPD=120°.
試題解析:
(1)∵△PCD是等邊三角形,
∴∠ACP=∠PDB=120°.
當=,即=,即當CD2=AC·DB時,△ACP∽△PDB.
(2)∵△ACP∽△PDB,∴∠A=∠DPB.
∴∠APB=∠APC+∠CPD+∠DPB=∠APC+∠CPD+∠A=∠PCD+∠CPD=120°.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于A、B兩點(點A在點B的左側),點B的坐標為(3,0),與軸交于點C(0,-3),頂點為D.
(1)求拋物線的解析式及頂點D的坐標.
(2)聯(lián)結AC,BC,求∠ACB的正切值.
(3)點P是x軸上一點,是否存在點P使得△PBD與△CAB相似,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)M是拋物線上一點,點N在軸,是否存在點N,使得以點A,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD是邊長為4的正方形,點P是平面內一點.且滿足BP⊥PC,現(xiàn)將點P繞點D順時針旋轉90度,則CQ的最大值=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:△ABC的周長為30cm,把△ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊與點E,連接AD,若AE=4cm,則△ABD的周長是( )
A. 22cmB. 20cmC. 18cmD. 15cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線MN交AC于點D,交AB于點M,CE平分∠ACB,交BD于點E.下列結論:①BD是∠ABC的角平分線;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤圖中的等腰三角形有5個。其中正確的結論是___.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉中心將△ABP逆時針旋轉60°得到△A′BC,連接A′A,當點A落在A′C上時,此題可解(如圖2).
請你回答:AP的最大值是 .
參考小偉同學思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內部一點,則AP+BP+CP的最小值是 .(結果可以不化簡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖平面直角坐標系中,已知三點 A(0,7),B(8,1),C(x,0)且 0<x <8.
(1)求線段 AB 的長;
(2)請用含 x 的代數式表示 AC+BC 的值;
(3)求 AC+BC 的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次軍事演習中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方決定調整方向,再朝南偏西45°方向前進了相同的距離,剛好在D處成功攔截藍方,求攔截點D處到公路的距離(結果不取近似值).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com