【題目】快、慢兩車分別從相距540千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時(shí),然后以原速度繼續(xù)向甲地行駛,到達(dá)甲地后停止行駛;快車到達(dá)乙地后,立即按原路原速返回甲地(快車掉頭的時(shí)間忽略不計(jì)),快、慢兩車距乙地的路程y(千米)與所有時(shí)間x(小時(shí))之間的函數(shù)圖像如圖。快車與慢車第一次相遇時(shí),慢車距離甲地_________千米.

【答案】360

【解析】

根據(jù)10小時(shí)后慢車到達(dá)甲地,可求出慢車的速度,然后求出a的值,根據(jù)a的值可求出快車的速度,然后可得第一次相遇時(shí)的時(shí)間,進(jìn)而可得第一次相遇時(shí),慢車距離甲地的距離.

解:由題意可得,

慢車的速度為:540÷101)=60(千米/時(shí))

a=(81×60420,

∴快車的速度為:(540420÷8120(千米/時(shí))

∴快車與慢車第一次相遇時(shí)所用時(shí)間為540÷60+120=3(小時(shí)),

此時(shí)慢車距離甲地的距離為:54060×3360(千米),

故答案為:360

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個(gè)數(shù)字.

(1)從這個(gè)袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是   ;

(2)從這個(gè)袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從這個(gè)袋子中任意摸只球,組成一個(gè)兩位數(shù),求所組成的兩位數(shù)是5的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OA=2OB=4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰RtABC,

(1)C點(diǎn)的坐標(biāo);

(2)如圖2,Py軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)向y軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以P為頂點(diǎn),PA為腰作等腰RtAPD,過DDEx軸于E點(diǎn),求OPDE的值;

(3)如圖3,已知點(diǎn)F坐標(biāo)為(2,2),當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),RtFGH,始終保持∠GFH=90,FGy軸負(fù)半軸交于點(diǎn)G(0,m),FHx軸正半軸交于點(diǎn)H(n,0),當(dāng)G點(diǎn)在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下兩個(gè)結(jié)論:①mn為定值;②m+n為定值,其中只有一個(gè)結(jié)論是正確的,請(qǐng)找出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)你觀察下列式子:

……

根據(jù)上面的規(guī)律,解答下列問題:

1)當(dāng)時(shí),

計(jì)算=_________;

2)設(shè),則a的個(gè)位數(shù)字為 ;

3)求式子的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y軸于點(diǎn)C,交x軸于點(diǎn)D,直線經(jīng)過點(diǎn)A(4,0),且兩直線交于點(diǎn)B(2,m).

(1)m的值和直線的函數(shù)表達(dá)式;

(2)直線在第一象限內(nèi)的部分有一點(diǎn)E,且,求出點(diǎn)E的坐標(biāo),并在y軸上找一點(diǎn)P,使得BP+PE的值最小,求出P的坐標(biāo)和這個(gè)最小值;

(3)(2)的條件下,若點(diǎn)Qy軸上一點(diǎn),且BPQ為等腰三角形,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C為線段AB上一點(diǎn),ACM、BCN是等邊三角形.

1)如圖1,求證:ANBM;

2)如圖2,將ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)180°,使點(diǎn)A落在CB上,結(jié)論ANBM是否還成立,若成立,請(qǐng)證明:若不成立,請(qǐng)說明理由;

3)在(2)所得的圖形中,設(shè)MA的延長線交BND(如圖3),試判斷ABD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中每個(gè)小正方形邊長都是1.

(1)畫出ABC關(guān)于直線1對(duì)稱的圖形A1BlCl;

(2)在直線l上找一點(diǎn)P,使PB=PC;(要求在直線1上標(biāo)出點(diǎn)P的位置)

(3)連接PA、PC,計(jì)算四邊形PABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)EAD上,請(qǐng)僅用無刻度直尺按要求作圖(保留作圖痕跡,不寫作法)

1)在圖1中,過點(diǎn)E作直線EF□ABCD分成兩個(gè)全等的圖形;

2)在圖2中,DEDC,請(qǐng)你作出∠BAD的平分線AM

查看答案和解析>>

同步練習(xí)冊(cè)答案