【題目】如圖,直線y1=-x-2交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y2=ax2+bx+c的頂點(diǎn)為A,且經(jīng)過點(diǎn)B.
(1)求該拋物線的解析式;
(2)求當(dāng)y1≥y2時x的值.
【答案】(1)y2=-x2-2x-2(2)x≤-2或x≥0.
【解析】(1)由于點(diǎn)A是拋物線的頂點(diǎn),可將拋物線的解析式設(shè)為頂點(diǎn)式,然后將B點(diǎn)坐標(biāo)代入即可求出二次函數(shù)的解析式;
(2)結(jié)合A、B的坐標(biāo)以及兩個函數(shù)的圖象,即可判斷出y1≥y2時x的取值范圍.
解:(1)∵直線y1=-x-2交x軸于點(diǎn)A,交y軸于點(diǎn)B,
∴點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,-2).
∵拋物線y2=ax2+bx+c的頂點(diǎn)為A,
∴設(shè)拋物線為y2=a(x+2)2,
∵拋物線過點(diǎn)B(0,-2),
∴-2=4a,a=-.
∴y2=-(x+2)2=-x2-2x-2.
(2)當(dāng)y1≥y2時,x的取值范圍是x≤-2或x≥0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直線MN經(jīng)過點(diǎn)A,BD⊥MN于點(diǎn)D,CE⊥MN于點(diǎn)E.
(1)試判斷線段DE、BD、CE之間的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)直線MN運(yùn)動到如圖2所示位置時,其余條件不變,判斷線段DE、BD、CE之間的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD是BC邊上的中線.
(1)畫出與△ACD關(guān)于點(diǎn)D成中心對稱的三角形;
(2)找出與AC相等的線段;
(3)探究:△ABC中AB與AC的和與中線AD之間有何大小關(guān)系?并說明理由;
(4)若AB=5,AC=3,求線段AD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF中,AF∥CD,AB∥DE,∠A=140°,∠B=100°,∠E=90°,求:∠C、∠D、∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個定點(diǎn),點(diǎn)B,D分別在AN,AM上,連接BD.
【發(fā)現(xiàn)】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請判斷△CBD的形狀,并證明你的結(jié)論;
【應(yīng)用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個數(shù)一共有 .(只填序號)
①2個②3個③4個④4個以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將長方形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.
(1)當(dāng)m=3時,點(diǎn)B的坐標(biāo)為_________,點(diǎn)E的坐標(biāo)為_________;
(2)隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能,請求出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),設(shè)計開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)將條形圖補(bǔ)充完整;
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,-2,3,-4,小明先從布袋中隨機(jī)摸出一個球(不放回去),再從剩下的3個球中隨機(jī)摸出第二個乒乓球.
(1)共有 種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com