拋物線y=3x2向右平移1個(gè)單位,再向下平移2個(gè)單位,所得到的拋物線是( 。
A、y=3(x-1)2-2
B、y=3(x+1)2-2
C、y=3(x+1)2+2
D、y=3(x-1)2+2
考點(diǎn):二次函數(shù)圖象與幾何變換
專題:
分析:根據(jù)圖象向下平移減,向右平移減,可得答案.
解答:解:拋物線y=3x2向右平移1個(gè)單位,再向下平移2個(gè)單位,所得到的拋物線是y=3(x-1)2-2,
故選:A.
點(diǎn)評(píng):本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知x<y,試比較2x-8與2y-8的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在鈍角三角形中,一個(gè)銳角是另一個(gè)銳角的2倍,則較小的銳角的度數(shù)范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:點(diǎn)A、B、C在⊙O上,∠AOC=120°,則∠ABC的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在函數(shù)y=
x+1
x-2
中,自變量x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)x1、x2是一元二次方程x2+4x-3=0的兩個(gè)根,2x1(x22+5x2-3)+a=2,則a的值為( 。
A、-2B、4C、8D、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1.已知正方形ABCD的邊長為1,點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于直線BP的對(duì)稱點(diǎn)是點(diǎn)Q,連結(jié)PQ、DQ、CQ、BQ,設(shè)AP=x.
(1)BQ+DQ的最小值是
 
.此時(shí)x的值是
 

(2)如圖2,若PQ的延長線交CD邊于點(diǎn)E,并且∠CQD=90°.
     ①求證:點(diǎn)E是CD的中點(diǎn);②求x的值.
(3)若點(diǎn)P是射線AD上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫出當(dāng)△CDQ為等腰三角形時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)F(2
3
,0),直線GF交y軸正半軸于點(diǎn)G,且∠GFO=30°.
(1)直接寫出點(diǎn)G的坐標(biāo);
(2)若⊙O的半徑為1,點(diǎn)P是直線GF上的動(dòng)點(diǎn),直線PA、PB分別約⊙O相切于點(diǎn)A、B.
①求切線長PB的最小值;
②問:在直線GF上是夠存在點(diǎn)P,使得∠APB=60°?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了
 
名學(xué)生;
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?

查看答案和解析>>

同步練習(xí)冊(cè)答案