【題目】如圖,矩形,,沿折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)的對應(yīng)點(diǎn)為,將繞著點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為.記旋轉(zhuǎn)過程中的三角形為,在旋轉(zhuǎn)過程中設(shè)直線與射線、射線分別交于點(diǎn)、,當(dāng)時(shí),則的長為_______

【答案】

【解析】

設(shè)AE=x=FC=FG,則BE=ED=8-x,根據(jù)勾股定理可得:x=,進(jìn)而確定BE、EF的長,再由折疊性質(zhì)可得∠BEF=DEF=BFE和∠DEF=NME=F',可證四邊形BEMF'為平行四邊形,進(jìn)而得到平行四邊形BEMF'為菱形,由菱形的性質(zhì)可得EM=BE,最后由即可解答.

解:如圖:AE=x=FC=FG,則,

中,有,即,

解得,

,,

由折疊的性質(zhì)得,

,

,

四邊形為平行四邊形,

由旋轉(zhuǎn)的性質(zhì)得:

,

平行四邊形為菱形,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對稱,已知A, D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2.

(1)對稱中心的坐標(biāo);

(2)寫出頂點(diǎn)B, C, B1 , C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AC=BC,CEABC的中線,BDAC邊上的高,BF平分∠CBDCE于點(diǎn)G,連接AGBD于點(diǎn)M,若∠AFG=63°,則∠AMB的度數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察、思考、應(yīng)用:

.

反之,

(1)仿上例,化簡

(2)若請用含的式子分別表示

(3)已知菱形的邊長為,則菱形對角線的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對知識進(jìn)行歸納和整理是完善知識結(jié)構(gòu)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識歸納整理如下:

(1)請你根據(jù)以上方框中的內(nèi)容在下面數(shù)字序號后寫出相應(yīng)的結(jié)論:

     ;②     ;③     ;④     .

(2)如果點(diǎn)C的坐標(biāo)為(1,3) ,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;按照此規(guī)律,第100個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和是(

A. 900 B. 903 C. 906 D. 807

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中, 為對角線, 的交點(diǎn),經(jīng)過點(diǎn)和點(diǎn)作⊙,分別交 于點(diǎn), .已知正方形邊長為,的半徑為,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC 的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:

(1)以A點(diǎn)為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△AB1C1,畫出△AB1C1.

(2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對稱的△A2B2C2.

(3)作出點(diǎn)C關(guān)于x軸的對稱點(diǎn)P. 若點(diǎn)P向右平移x個(gè)單位長度后落在△A2B2C2的內(nèi)部(不含落在△A2B2C2的邊上),請直接寫出x的取值范圍..

(提醒:每個(gè)小正方形邊長為1個(gè)單位長度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)兩點(diǎn)關(guān)于原點(diǎn)對稱,將點(diǎn)向左平移3個(gè)單位到達(dá)點(diǎn),設(shè)點(diǎn),且.

1)求實(shí)數(shù)的值;

2)畫出以點(diǎn)為頂點(diǎn)的四邊形,并求出這個(gè)四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案