【題目】如圖,在△ABC中,BO、CO分別平分∠ABC、∠ACB.若∠BOC=110°,則∠A=_____.
【答案】40°
【解析】
先根據(jù)角平分線的定義得到∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和定理得∠BOC+∠OBC+∠OCB=180°,則∠BOC=180°﹣(∠ABC+∠ACB),由于∠ABC+∠ACB=180°﹣∠A,所以∠BOC=90°+∠A,然后把∠BOC=110°代入計算可得到∠A的度數(shù).
解:∵BO、CO分別平分∠ABC、∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
而∠BOC+∠OBC+∠OCB=180°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB),
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°﹣∠A,
∴∠BOC=180°﹣(180°﹣∠A)=90°+∠A,
而∠BOC=110°,
∴90°+∠A=110°
∴∠A=40°.
故答案為40°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P在正方形ABCD的對角線AC上,正方形的邊長是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點P,使△PEF繞點P旋轉,當PM⊥BC時,四邊形PMCN是正方形.填空:①當AP=2PC時,四邊形PMCN的邊長是;②當AP=nPC時(n是正實數(shù)),四邊形PMCN的面積是 .
(2)猜想論證 如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點P在矩形ABCD的對角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點M、N,固定點P,使△PEF繞點P旋轉,則 = .
(3)拓展探究 如圖4,當四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時,點P在AC上,PE、PF分別交BC,CD于M、N點,固定P點,使△PEF繞點P旋轉,請?zhí)骄? 的值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于下列各組條件,不能判定△≌△的一組是 ( )
A. ∠A=∠A′,∠B=∠B′,AB=A′B′
B. ∠A=∠A′,AB=A′B′,AC=A′C′
C. ∠A=∠A′,AB=A′B′,BC=B′C′
D. AB=A′B′,AC=A′C′,BC=B′C′
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CA=CB,點E,F在射線CD上,滿足∠BEC=∠CFA,且∠BEC+∠ECB+∠ACF=180°.
(1)求證:△BCE≌△CAF;
(2)試判斷線段EF,BE,AF的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(A在B的左邊),與y軸交于點C,拋物線上有一動點P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點P在第四象限運動,點D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點P在第一象限運動,且a<0,連接AP、BP分別交y軸于點E、F,則問 是否與a,c有關?若有關,用a,c表示該比值;若無關,求出該比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是小華同學一個學期數(shù)學成績的記錄.根據(jù)表格提供的信息,回答下列的問題:
考試類別 | 平時考試 | 期中考試 | 期末考試 | |||
第一單元 | 第二單元 | 第三單元 | 第四單元 | |||
成績(分) | 85 | 78 | 90 | 91 | 90 | 94 |
(1)小明6次成績的眾數(shù)是 ,中位數(shù)是 ;
(2)求該同學這個同學這一學期平時成績的平均數(shù);
(3)總評成績權重規(guī)定如下:平時成績占20%,期中成績占30%,期末成績占50%,請計算出小華同學這一個學期的總評成績是多少分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,將△BCD沿BD折疊,使點C落在AB邊的C′點處,那么△ADC′的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)已知△ABC是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側作等邊△ADE.
(1)如圖①,點D在線段BC上移動時,直接寫出∠BAD和∠CAE的大小關系;
(2)如圖②,點D在線段BC的延長線上移動時,猜想∠DCE的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com