【題目】平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使ABC為等腰三角形,則滿足條件的點C的個數(shù)是__________.

【答案】5

【解析】解:A、B的坐標分別為(22)、B40),AB=

AC=AB,以A為圓心,AB為半徑畫弧與坐標軸有3個交點(含B點),即(0,0)、(4,0)、(0,4),點(0,4)與直線AB共線,滿足ABC是等腰三角形的C點有1個;

BC=AB,以B為圓心,BA為半徑畫弧與坐標軸有2個交點(A點除外),即滿足ABC是等腰三角形的C點有2個;

CA=CB,作AB的垂直平分線與坐標軸有兩個交點,即滿足ABC是等腰三角形的C點有2個;

綜上所述:點C在坐標軸上,ABC是等腰三角形,符合條件的點C共有5個.

故答案為:5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】聲音在空氣中的傳播速度v(m/s)與溫度T(℃)的關(guān)系如下表:

溫度/℃

0

5

10

15

20

速度v/(m/s)

331

334

337

340

343

(1)寫出速度v與溫度T之間的關(guān)系式;

(2)當T=30℃時,求聲音的傳播速度;

(3)當聲音的傳播速度為346m/s時,溫度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在第一個ABA1中,∠B=20°,AB=A1B,在A1B上取一點C,延長AA1A2,使得A1A2=A1C,得到第二個A1A2C;在A2C上取一點D,延長A1A2A3,使得A2A3=A2D;^,按此做法進行下去,則第5個三角形中,以點A5為頂點的底角的度數(shù)為(

A. B. 10° C. 170° D. 175°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ADBC,AE平分∠BACBC于點E.

(1)B=30°,C=70°,求∠EAD的大。

(2)若∠B<C,則2EAD與∠C-B是否相等?若相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=3,BC=6,點E在邊BC上,且BE=2CE,將矩形沿過點E的直線折疊,點C、D的對應(yīng)點分別為C′、D′,折痕與邊AD交于點F,當點B、C′、D′恰好在同一直線上時,AF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情景:如圖1,ABCD,PAB=140°,PCD=135°,求∠APC的度數(shù).

(1)麗麗同學看過圖形后立即口答出:∠APC=85°,請你補全她的推理依據(jù).

如圖2,過點PPEAB,

ABCD,PECD. (   

∴∠A+APE=180°.

C+CPE=180°. (   

∵∠PAB=140°,PCD=135°,

∴∠APE=40°,CPE=45°

∴∠APC=APE+CPE=85°.(   

問題遷移:

(2)如圖3,ADBC,當點PA、B兩點之間運動時,∠ADP=α,BCP=β,求∠CPD與∠α、β之間有何數(shù)量關(guān)系?請說明理由.

(3)在(2)的條件下,如果點PA、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD與∠α、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,EAC上一點,∠ABE=∠AEB,∠CDE=∠CED

求證:BEDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強與小剛都住在安康小區(qū),在同一所學校讀書.某天早上,小強從安康小區(qū)站乘坐校車去學校,途中需?績蓚站點才能到達學校站點,且每個站點停留分鐘,校車行駛途中始終保持勻速.當天早上,小剛從安康小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,比小強乘坐的校車早分鐘到學校站點.他們乘坐的車輛從安康小區(qū)站出發(fā)所行駛路程(千米)與行駛時間(分鐘)之間的函數(shù)圖象如圖所示.

(1)求點的縱坐標的值;

(2)小剛乘坐出租車出發(fā)后經(jīng)過多少分鐘追到小強所乘坐的校車?并求此時他們距學校站點的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2011次運動后,動點P的坐標是____________。

查看答案和解析>>

同步練習冊答案