【題目】已知:點P(m,4)在反比例函數(shù)y=﹣的圖象上,正比例函數(shù)的圖象經(jīng)過點P和點Q(6,n).

(1)求正比例函數(shù)的解析式;

(2)P、Q兩點之間的距離.

【答案】(1)y=-x;(2)15.

【解析】

(1)設(shè)正比例函數(shù)解析式為y=kx(k≠0),把點P的坐標(biāo)代入反比例函數(shù)解析式求出m的值,從而得到點P的坐標(biāo),然后代入正比例函數(shù)解析式求解即可;

(2)把點Q的坐標(biāo)代入正比例函數(shù)解析式求出n,根據(jù)兩點間的距離公式即可得到結(jié)論.

(1)設(shè)正比例函數(shù)解析式為y=kx(k≠0),

∵點P(m,4)在反比例函數(shù)y=-的圖象上,

-=4,

解得m=-3,

P的坐標(biāo)為(-3,4),

∵正比例函數(shù)圖象經(jīng)過點P,

-3k=4,

解得k=-,

∴正比例函數(shù)的解析式為y=-x;

(2)∵正比例函數(shù)圖象經(jīng)過點Q(6,n),

n=-×6=-8,

∴點Q(6,-8),

P、Q兩點之間的距離==15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EF是對角線AC上兩點,連接BE、BF、DE、DF,則添加下列條件①∠ABE=∠CBF;②AECF;③ABAF;④BEBF.可以判定四邊形BEDF是菱形的條件有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進(jìn)行預(yù)測,井建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),Pt之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Qt之間滿足如下關(guān)系:Q=

(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;

(2)設(shè)第t個月銷售該原料藥的月毛利潤為w(單位:萬元)

①求w關(guān)于t的函數(shù)解析式;

②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應(yīng)的月銷售量P的最小值和最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).

請根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計圖補(bǔ)充完整.(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點,與y軸交于點B,拋物線經(jīng)過點

k的值和拋物線的解析式;

x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點

若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,m的值.

當(dāng) ,m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=的圖象經(jīng)過點P(4,3)和點B(m,n)(其中0<m<4),作BAx軸于點A,連接PA,PB,OB,已知SAOB=SPAB

(1)求k的值和點B的坐標(biāo).

(2)求直線BP的解析式.

(3)直接寫出在第一象限內(nèi),使反比例函數(shù)大于一次函數(shù)的x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形OABC在平面直角坐標(biāo)系內(nèi)的位置如圖所示,點O為坐標(biāo)原點,點A的坐標(biāo)為(10,0),點B的坐標(biāo)為(10,8),已知直線AC與雙曲線ym0)在第一象限內(nèi)有一交點Q5n).

1)求直線AC和雙曲線的解析式;

2)若動點PA點出發(fā),沿折線AOOC的路徑以每秒2個單位長度的速度運(yùn)動,到達(dá)C處停止.求△OPQ的面積S與的運(yùn)動時間t秒的函數(shù)關(guān)系式,并求當(dāng)t取何值時S10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式并把它的解集在數(shù)軸上表示出來.

13x-1≥2x-1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx4x軸交于點A,以OA為斜邊在x軸上方作等腰RtOAB,并將RtAOB沿x軸向右平移,當(dāng)點B落在直線yx4上時,RtOAB掃過的面積是__

查看答案和解析>>

同步練習(xí)冊答案