【題目】如圖,正方形ABCD中,E、F是對角線AC上兩點,連接BE、BF、DE、DF,則添加下列條件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四邊形BEDF是菱形的條件有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
根據(jù)正方形的四條邊都相等,對角線互相垂直平分且每一條對角線平分一組對角的性質(zhì),再加上各選項的條件,對各選項分析判斷后即可得出正確選項的個數(shù)
解:如圖,連接BD,交AC于點O,
在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,AO=CO,BO=DO,
①在△ABE與△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=BF,
∵AC⊥BD,
∴OE=OF,
所以四邊形BEDF是菱形,故①選項正確;
②在正方形ABCD中,AC=BD,
∴OA=OB=OC=OD,
∵AE=CF,
∴OE=OF,又EF⊥BD,BO=OD,
∴四邊形BEDF是菱形,故②選項正確;
③AB=AF,不能推出四邊形BEDF其它邊的關(guān)系,故不能判定是菱形,本選項錯誤;
④BE=BF,同①的后半部分證明,故④選項正確.
所以①②④共3個可以判定四邊形BEDF是菱形.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相交于點D,AD平分∠BAC.
(1)求證,BC是⊙O的切線.
(2)若BE=2,BD=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,.
(1)求內(nèi)切圓的半徑;
(2)若移動圓心的位置,使保持與的邊、都相切.
①求半徑的取值范圍;
②當的半徑為時,求圓心的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,過點E作EF∥CD交BC的延長線于點F,連接CD.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為 20 元/千克,售價不低于 20 元/千克,且不超過 32 元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克)與該天的售價 x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價 x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為 23.5 元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與軸、軸相交于點和點,點的坐標為,點的坐標為.
(1)求的值;
(2)若點是第二象限內(nèi)的直線上的一個動點,當點運動過程中,試寫出的面積與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)探究:當運動到什么位置時,的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點P(m,4)在反比例函數(shù)y=﹣的圖象上,正比例函數(shù)的圖象經(jīng)過點P和點Q(6,n).
(1)求正比例函數(shù)的解析式;
(2)求P、Q兩點之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com