【題目】兩個工程隊(duì)共同參與一項(xiàng)筑路工程,甲隊(duì)單獨(dú)施工3個月,這時增加了乙隊(duì),兩隊(duì)又共同工作了2個月,總工程全部完成,已知甲隊(duì)單獨(dú)完成全部工程比乙隊(duì)單獨(dú)完成全部工程多用2個月,設(shè)甲隊(duì)單獨(dú)完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是( )
A.B.C.D.
【答案】A
【解析】
設(shè)甲隊(duì)單獨(dú)完成全部工程需個月,則乙隊(duì)單獨(dú)完成全部工程需要(x-2)個月,根據(jù)甲隊(duì)施工5個月的工程量+乙隊(duì)施工2個月的工程量=總工程量1列出方程,然后依次對各方程的左邊進(jìn)行變形即可判斷.
解:設(shè)甲隊(duì)單獨(dú)完成全部工程需個月,則乙隊(duì)單獨(dú)完成全部工程需要(x-2)個月,根據(jù)題意,得:;
A、,與上述方程不符,所以本選項(xiàng)符合題意;
B、可變形為,所以本選項(xiàng)不符合題意;
C、可變形為,所以本選項(xiàng)不符合題意;
D、的左邊化簡得,所以本選項(xiàng)不符合題意.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx﹣8(a≠0)的對稱軸是直線x=1,
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2+bx﹣8=0,有一個根為4,求方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了調(diào)查學(xué)生書寫漢字的能力,從八年級800名學(xué)生中隨機(jī)抽選了50名學(xué)生參加測試,這50名學(xué)生同時聽寫50個常用漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出不完整的頻數(shù)分布表和頻數(shù)分布直方圖如圖表:
頻數(shù)分布表
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于40分為優(yōu)秀,請你估計(jì)該校八年級漢字書寫優(yōu)秀的人數(shù)?
(4)第一組中的A、B、C、D 四名同學(xué)為提高漢字書寫能力,分成兩組,每組兩人進(jìn)行對抗練習(xí),請用列表法或畫樹狀圖的方法,求A與B名同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:
如圖1,△ABC中,∠A=90°,∠B=30°,點(diǎn)D,E分別在AB,BC上,且∠CDE=90°.當(dāng)BE=2AD時,圖1中是否存在與CD相等的線段?若存在,請找出并加以證明,若不存在,說明理由.
小明通過探究發(fā)現(xiàn),過點(diǎn)E作AB的垂線EF,垂足為F,能得到一對全等三角形(如圖2),從而將解決問題.
請回答:
(1)小明發(fā)現(xiàn)的與CD相等的線段是_____.
(2)證明小明發(fā)現(xiàn)的結(jié)論;
參考小明思考問題的方法,解決下面的問題:
(3)如圖3,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在BC上,BD=2DC,點(diǎn)E在AD上,且∠BEC=135°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點(diǎn),E是BF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。
A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖(1)).令△ABD不動,
(1)若將△ACE繞點(diǎn)A逆時針旋轉(zhuǎn),連接DE,M是DE的中點(diǎn),連接MB、MC(圖(2)),證明:MB=MC.
(2)若將圖(1)中的CE向上平移,∠CAE不變,連接DE,M是DE的中點(diǎn),連接MB、MC(圖(3)),判斷MB、MC的數(shù)量關(guān)系,并說明理由.
(3)在(2)中,若∠CAE的大小改變(圖(4)),其他條件不變,則(2)中的MB、MC的數(shù)量關(guān)系還成立嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com