【題目】如圖,中,,,于點(diǎn),點(diǎn)是線段的一個(gè)動(dòng)點(diǎn),則的最小值是________.
【答案】
【解析】
作EG⊥AC于G,BH⊥AC于H,由tanA==3,設(shè)AD=a,CD=3a,利用勾股定理構(gòu)建方程求出a,再證明EG=EC,推出BE+EC=BE+EG,由垂線段最短即可解決問(wèn)題.
解:如圖,作EG⊥AC于G,BH⊥AC于H,
∵CD⊥AB,
∴∠ADC=90°,
∵tanA==3,設(shè)AD=a,CD=3a,
∵AB=AC=10,
則有:102=a2+9a2,
∴a2=10,
∴a=或(舍),
∴CD=3a=,
∵AB=AC,CD⊥AB,BH⊥AC,
∴BH=CD=,
∵∠ECG=∠ACD,∠CGE=∠CDA,
∴sin∠ECG===,
∴EG=EC,
∴BE+EC=BE+EG,
∴BE+EG≥BH,
∴BE+EC≥,
∴BE+EC的最小值為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生?在扇形統(tǒng)計(jì)圖中,表示" "的扇形圓心角的度數(shù)是多少;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信"、""、“電話"三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,∠ACB=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB1C1,當(dāng)點(diǎn)C1、B1、C三點(diǎn)共線時(shí),旋轉(zhuǎn)角為α,連接BB1,交AC于點(diǎn)D.下列結(jié)論:①△AC1C為等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正確的是( )
A.①③④B.①②④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l1,l2,l3,l4是同一平面內(nèi)的一組平行線.
(1)如圖1,正方形ABCD的4個(gè)頂點(diǎn)都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點(diǎn)A,點(diǎn)C分別在直線l1和l4上,求正方形的面積.
(2)如圖2,正方形ABCD的4個(gè)頂點(diǎn)分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為h1,h2,h3.
①求證:h1=h3.
②設(shè)正方形ABCD的面積為S,求證:S=2h12+2h1h2+h22.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)在上,點(diǎn)是弧的中點(diǎn),交于點(diǎn),點(diǎn)是延長(zhǎng)線上一點(diǎn),連接,且.
(1)試判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像經(jīng)過(guò)的三個(gè)頂點(diǎn),其中,
(1)求點(diǎn)的坐標(biāo);
(2)在第三象限存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,求滿足條件的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,能否將拋物線平移后經(jīng)過(guò)兩點(diǎn),若能求出平移后經(jīng)過(guò)兩點(diǎn)的拋物線的表達(dá)式,并寫出平移過(guò)程.若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形 ABCD 中,AD / /BC ,AD CD ,M 為腰 AB 上一動(dòng)點(diǎn),聯(lián)結(jié) MC 、MD , AD 10, BC 15 , cot B ,求:
(1)線段CD 的長(zhǎng).
(2)設(shè)線段 BM 的長(zhǎng)為 x ,△CDM的面積為 y ,求 y 關(guān)于 x 的函數(shù)解析式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D為AB中點(diǎn),過(guò)點(diǎn)D作DF//BC交AC于點(diǎn)E,且DE=EF,連接AF,CF,CD.
(1)求證:四邊形ADCF為平行四邊形;
(2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為貫徹落實(shí)“綠水青山就是金山銀山“的發(fā)展理念,投資組建了日廢水處理量為m噸的廢水處理車間,對(duì)該廠工業(yè)廢水進(jìn)行無(wú)害化處理. 但隨著工廠生產(chǎn)規(guī)模的擴(kuò)大,該車間經(jīng)常無(wú)法完成當(dāng)天工業(yè)廢水的處理任務(wù),需要將超出日廢水處理量的廢水交給第三方企業(yè)處理. 已知該車間處理廢水,每天需固定成本30元,并且每處理一噸廢水還需其他費(fèi)用8元;將廢水交給第三方企業(yè)處理,每噸需支付12元.根據(jù)記錄,5月21日,該廠產(chǎn)生工業(yè)廢水35噸,共花費(fèi)廢水處理費(fèi)370元.
(1)求該車間的日廢水處理量m;
(2)為實(shí)現(xiàn)可持續(xù)發(fā)展,走綠色發(fā)展之路,工廠合理控制了生產(chǎn)規(guī)模,使得每天廢水處理的平均費(fèi)用不超過(guò)10元/噸,試計(jì)算該廠一天產(chǎn)生的工業(yè)廢水量的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com