【題目】如圖4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點P從點A出發(fā)沿邊AC向點C以1cm/s的速度移動,點Q從C點出發(fā)沿CB邊向點B以2cm/s的速度移動.
(1)、如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)、點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半.若存在,求出運動的時間;若不存在,說明理由.
【答案】(1)、2s或4s;(2)、不存在
【解析】
試題分析:(1)設(shè)時間為x,則分別用含x的代數(shù)式表示PC和CQ的長度,根據(jù)三角形面積的計算公式求出x的值;(2)、方法同第一個.
試題解析:(1)設(shè)xs后,可使△PCQ的面積為8,所以 AP=xcm,PC=(6-x)cm,CQ=2xcm.
則根據(jù)題意,得·(6-x)·2x=8.整理,得-6x+8=0
解得=2,=4.
所以P、Q同時出發(fā),2s或4s后可使△PCQ的面積為8.
(2)、設(shè)點P出發(fā)x秒后,△PCQ的面積等于△ABC面積的一半.
則根據(jù)題意,得(6-x)·2x=××6×8.整理,得-6x+12=0.
由于此方程沒有實數(shù)根,所以不存在使△PCQ的面積等于△ABC面積一半的時刻.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)交x軸于A(﹣1,0),B(5,0)兩點,與y軸交于點C(0,2)
(1)求拋物線的解析式;
(2)若點M為拋物線的頂點,連接BC、CM、BM,求△BCM的面積;
(3)連接AC,在x軸上是否存在點P使△ACP為等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(2)班派出12名同學(xué)參加數(shù)學(xué)競賽,老師以75分為基準(zhǔn),把分?jǐn)?shù)超過75分的部分記為正數(shù),不足的部分記為負(fù)數(shù).評分記錄如下:
+15,+20,-5,-4,-3,+4,+6,+2,+3,+5,+7,-8
(1)這12名同學(xué)中最高分和最低分各是多少分?
(2)超過基準(zhǔn)分的有多少人?
(3)這12名同學(xué)的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD=AC,BE=BC.
(1)若∠ACB=96°,求∠DCE的度數(shù).
(2)問:∠DCE與∠A,∠B之間存在怎樣的數(shù)量關(guān)系(直接寫出答案)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由一些火柴棒搭成的圖案:
(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.
(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?
(3)計算一下擺121根火柴棒時,是第幾個圖案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備食建一個面積為200m2的矩形花圃,它的長比寬多10m,設(shè)花圃的寬為x m.則可列方程為( )
A.x (x﹣10)=200
B.2x+2 (x﹣10)=200
C.x(x+10)=200
D.2x+2(x+10)=200
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)以a,b為直角邊,c為斜邊作兩個全等的Rt△ABE與Rt△FCD拼成如圖1所示的圖形,使B,E,F,C四點在一條直線上(此時E,F重合),可知△ABE ≌△FCD,AEDF,請你證明:;
(2)在(1)中,固定△FCD,再將△ABE沿著BC平移到如圖2的位置(此時B,F重合),請你重新證明:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄭州市霧霾天氣趨于嚴(yán)重,丹尼斯商場根據(jù)民眾健康需要,代理銷售每臺 進(jìn)價分別為600元、560元的A、B兩種型號的空氣凈化器,如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 4臺 | 5臺 | 7100元 |
第二周 | 6臺 | 10臺 | 12600元 |
(進(jìn)價、售價均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A,B兩種型號的空氣凈化器的銷售單價;
(2)若商場準(zhǔn)備用不多于17200元的金額再采購這兩種型號的空氣凈化器共30臺,超市銷售完這30臺空氣凈化器能否實現(xiàn)利潤為6200元的目標(biāo),若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com