【題目】如圖,每個小方格都是邊長為1個單位長度的正方形,△ABC和△A1B1C1在平面直角坐標(biāo)系中位置如圖所示.
(1)△ABC與△A1B1C1關(guān)于某條直線m對稱,畫出對稱軸m.
(2)畫出△A1B1C1繞原點O順時針旋轉(zhuǎn)90°所得的△A2B2C2.此時點A2的坐標(biāo)為________;
求出點A1旋轉(zhuǎn)到點A2的路徑長.(結(jié)果保留根號)
【答案】見解析
【解析】
(1)直接利用軸對稱圖形的性質(zhì)結(jié)合網(wǎng)格得出對稱軸m;
(2)利用旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點位置進而得出答案,再利用弧長公式求出點A1旋轉(zhuǎn)到點A2的路徑長.
解:(1)如圖所示,連接AA1,過AA1的中點作垂直平分線即可,則直線m即為所求;
(2)如圖所示:△A2B2C2,即為所求,點A2的坐標(biāo)為:(1,4),
△A1B1C1繞原點O順時針旋轉(zhuǎn)90°,相當(dāng)于以O點為圓心,OA1為半徑畫一個四分之一的圓弧,由弧長公式可得:點A1旋轉(zhuǎn)到點A2的路徑長為:,
故答案為:點A2的坐標(biāo)為(1,4);.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O過ABCD的三頂點A、D、C,邊AB與⊙O相切于點A,邊BC與⊙O相交于點H,射線AD交邊CD于點E,交⊙O于點F,點P在射線AO上,且∠PCD=2∠DAF.
(1)求證:△ABH是等腰三角形;
(2)求證:直線PC是⊙O的切線;
(3)若AB=2,AD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上的中線,點為線段上一點(不與點、點重合),連接,作與的延長線交于點,與交于點,連接.
(1)求證:;
(2)求的度數(shù);
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在正方形ABCD中,G是CD邊上的一個動點(不與C、D重合),以CG為邊在正方形ABCD外作一個正方形CEFG,連結(jié)BG、DE,如圖①.直接寫出線段BG、DE的關(guān)系 ;
(2)將圖①中的正方形CEFG繞點C按順時針方向旋轉(zhuǎn)任意角度,如圖②,試判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論,若不成立,說明理由;
(3)將(1)中的正方形都改為矩形,如圖③,再將矩形CEFG繞點C按順時針方向旋轉(zhuǎn)任意角度,如圖④,若AB=a,BC=b;CE =ka,CG=kb,()試判斷(1)中的結(jié)論是否仍然成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期天,小強去水庫大壩游玩,他站在大壩上的A處,看到一棵大樹的影子剛好落在壩底的B處(假設(shè)大樹DE與地面垂直,點A與大樹及其影子在同一平面內(nèi)),此時太陽光與地面成60°角;在A處測得樹頂D的俯角為15°.如圖所示,已知斜坡AB的坡度為,AB為12米.請你幫助小強計算一下這顆大樹的高度?(結(jié)果精確到0.1米.參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時期的數(shù)學(xué)家劉徽(263年左右)首創(chuàng)“割圓術(shù)”,所謂“割圓術(shù)”就是利用圓內(nèi)接正多邊形無限逼近圓來確定圓周率,劉徽計算出圓周率.劉微從正六邊形開始分割圓,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,圓內(nèi)接正二十四邊形,…,割得越細(xì),正多邊形就越接近圓.設(shè)圓的半徑為,圓內(nèi)接正六邊形的周長,計算;圓內(nèi)接正十二邊形的周長,計算;那么分割到圓內(nèi)接正二十四邊形后,通過計算可以得到圓周率__________.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗室里,水平桌面上有甲、乙、丙三個高都為10cm圓柱形容器(甲、丙的底面積相同),用兩個相同的管子在容器的6cm高度處連通(即管子底離容器底6cm,管子的體積忽略不計).現(xiàn)三個容器中,只有甲中有水,水位高2cm,如圖①所示.若每分鐘同時向乙、丙容器中注入相同量的水,到三個容器都注滿水停止,乙、丙容器中的水位h(cm)與注水時間t(min)的圖象如圖②所示.若乙比甲的水位高2cm時,注水時間m分鐘,則m的值為( 。
A.3或5B.4或6C.3或D.5或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com