【題目】(1)在正方形ABCD中,G是CD邊上的一個(gè)動(dòng)點(diǎn)(不與C、D重合),以CG為邊在正方形ABCD外作一個(gè)正方形CEFG,連結(jié)BG、DE,如圖①.直接寫(xiě)出線段BG、DE的關(guān)系 ;
(2)將圖①中的正方形CEFG繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度,如圖②,試判斷(1)中的結(jié)論是否成立?若成立,直接寫(xiě)出結(jié)論,若不成立,說(shuō)明理由;
(3)將(1)中的正方形都改為矩形,如圖③,再將矩形CEFG繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)任意角度,如圖④,若AB=a,BC=b;CE =ka,CG=kb,()試判斷(1)中的結(jié)論是否仍然成立?并說(shuō)明理由.
【答案】(1)BG=DE, BG⊥DE;(2)BG=DE, BG⊥DE;(3)BG⊥DE成立,BG=DE不成立,理由見(jiàn)解析.
【解析】
(1)由正方形的性質(zhì)得出BC=CD,CE=CG,∠BCD=∠ECG=90°,由SAS證明△BCG≌△DCE,得出BG=DE,∠CBG=∠CDE,延長(zhǎng)BG交DE于H,由角的互余關(guān)系和對(duì)頂角相等證出∠CDE+∠DGH=90°,由三角形內(nèi)角和定理得出∠DHG=90°即可;
(2)由正方形的性質(zhì)可得BC=CD,CE=CG,∠BCD=∠ECG=90°,然后求出∠BCG=∠DCE,由SAS證明△BCG和△DCE全等,由全等三角形對(duì)應(yīng)邊相等可得BG=DE,全等三角形對(duì)應(yīng)角相等可得∠CBG=∠CDE,然后求出∠DOH=90°,再根據(jù)垂直的定義證明即可;
(3)根據(jù)矩形的性質(zhì)證明△BCG∽△DCE,得到,根據(jù)相似三角形對(duì)應(yīng)角相等可得∠CBG=∠CDE,然后求出∠DOH=90°,再根據(jù)垂直的定義證明即可.
(1)解:BG=DE,BG⊥DE;理由如下:
∵四邊形ABCD是正方形,四邊形CEFG是正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
在△BCG和△DCE中,
,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
延長(zhǎng)BG交DE于H,如圖所示:
∵∠CBG+∠BGC=90°,∠DGH=∠BGC,
∴∠CDE+∠DGH=90°,
∴∠DHG=90°,
∴BG⊥DE;
(2)解:成立;理由如下:
∵四邊形ABCD是正方形,四邊形CEFG是正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCG=∠ECG+∠DCG,
即∠BCG=∠DCE,
在△BCG和△DCE中,
,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
∵∠CBG+∠BHC=90°,∠BHC=∠DHO,
∴∠CDE+∠DHO=90°,
在△DHO中,∠DOH=180°(∠CDE+∠DHO)=180°90°=90°,
∴BG⊥DE.
(3)BG⊥DE成立,BG=DE不成立.
結(jié)合圖④說(shuō)明如下:
∵四邊形ABCD和四邊形CEFG都是矩形,且AB=a,BC=b,CG=kb,CE=ka(a≠b,k>0),
,
∠BCD=∠ECG=90°.
∴∠BCG=∠DCE.
∴△BCG∽△DCE.
∴,∠CBG=∠CDE.
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°.
∴∠DOH=90°.
∴BG⊥DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c(a≠0)的頂點(diǎn)為C,交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D.
(1)求拋物線的解析式;并直接寫(xiě)出點(diǎn)C的坐標(biāo).
(2)如圖2,點(diǎn)P為直線BD上方拋物線上一點(diǎn),作PE⊥BD于點(diǎn)E,AF⊥BD于點(diǎn)F若,請(qǐng)求出點(diǎn)P的坐標(biāo).
(3)如圖3,M為線段AB上的一點(diǎn),過(guò)點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,若△DNM∽△BMD,請(qǐng)求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(-4,0),對(duì)稱(chēng)軸為直線x=-1,下列結(jié)論:
①abc>0;
②2a-b=0;
③一元二次方程ax2+bx+c=0的解是x1=-4,x2=1;
④當(dāng)y>0時(shí),-4<x<2.
其中正確的結(jié)論有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,,,點(diǎn),分別是邊,上的動(dòng)點(diǎn),且,點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)恰好落在的內(nèi)角平分線上,則長(zhǎng)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,點(diǎn)M,N分別在線段AC,AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,若△DCM為直角三角形時(shí),則AM的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC和△A1B1C1在平面直角坐標(biāo)系中位置如圖所示.
(1)△ABC與△A1B1C1關(guān)于某條直線m對(duì)稱(chēng),畫(huà)出對(duì)稱(chēng)軸m.
(2)畫(huà)出△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2.此時(shí)點(diǎn)A2的坐標(biāo)為________;
求出點(diǎn)A1旋轉(zhuǎn)到點(diǎn)A2的路徑長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,一等腰直角三角板的一個(gè)銳角頂點(diǎn)與A重合,將此三角板繞A點(diǎn)旋轉(zhuǎn)時(shí),兩邊分別交直線BC、CD于M、N.
(1)當(dāng)M、N分別在邊BC、CD上時(shí)(如圖1),求證:BM+DN=MN;
(2)當(dāng)M、N分別在邊BC、CD所在的直線上時(shí)(如圖2,圖3),線段BM、DN、MN之間又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論;
(3)在圖3中,作直線BD交直線AM、AN于P、Q兩點(diǎn),若MN=10,CM=8,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒(méi)有實(shí)數(shù)根,即不存在一個(gè)實(shí)數(shù)的平方等于﹣1.若我們規(guī)定一個(gè)新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個(gè)根為i).并且進(jìn)一步規(guī)定:一切實(shí)數(shù)可以與新數(shù)進(jìn)行四則運(yùn)算,且原有運(yùn)算律和運(yùn)算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,從而對(duì)任意正整數(shù)n,我們可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值為( 。
A.0B.1C.﹣1D.i
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com