【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙、丙三個(gè)高都為10cm圓柱形容器(甲、丙的底面積相同),用兩個(gè)相同的管子在容器的6cm高度處連通(即管子底離容器底6cm,管子的體積忽略不計(jì)).現(xiàn)三個(gè)容器中,只有甲中有水,水位高2cm,如圖①所示.若每分鐘同時(shí)向乙、丙容器中注入相同量的水,到三個(gè)容器都注滿水停止,乙、丙容器中的水位h(cm)與注水時(shí)間t(min)的圖象如圖②所示.若乙比甲的水位高2cm時(shí),注水時(shí)間m分鐘,則m的值為( 。
A.3或5B.4或6C.3或D.5或9
【答案】C
【解析】
確定、的值,再分乙容器的水位達(dá)到時(shí)、甲容器的水位達(dá)到時(shí)兩種情況,分別求解.
解:2分鐘時(shí),丙的水量達(dá)到6cm,而此時(shí)乙的水量為2cm,故乙、丙兩容器的底面積之比為3:1,
∵乙、丙兩容器的底面積之比為3:1,丙容器注入2分鐘到達(dá)6cm,
∴乙容器的水位達(dá)到6cm所需時(shí)間為:a=2+2=4(min),
b=(10﹣2+10×3+10)÷6=8(min).
①當(dāng)2≤x≤4時(shí),設(shè)乙容器水位高度h與時(shí)間t的函數(shù)關(guān)系式為h=kt+b(k≠0),
∵圖象經(jīng)過(2,2)、(4,6)兩點(diǎn),則,解得:,
∴h=2t﹣2(2≤x≤4).
當(dāng)h=4時(shí),則2t﹣2=4,解得t=3;
②設(shè)t分鐘后,甲容器水位為4cm,根據(jù)題意得:2+6(t﹣4)=4,
解得:t=.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有分別標(biāo)注著漢字“海、“棠”、“園”的三個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一球,球上的漢字恰好是“園”的概率是
(2)若從袋中任取一球,記下漢字后放回袋中,然后再從中任取一球,再次記下球上的漢字,求兩次的漢字恰好組成“海棠”這個(gè)詞的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC和△A1B1C1在平面直角坐標(biāo)系中位置如圖所示.
(1)△ABC與△A1B1C1關(guān)于某條直線m對(duì)稱,畫出對(duì)稱軸m.
(2)畫出△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2.此時(shí)點(diǎn)A2的坐標(biāo)為________;
求出點(diǎn)A1旋轉(zhuǎn)到點(diǎn)A2的路徑長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一工廠生產(chǎn)某種零件,該廠為了鼓勵(lì)銷售代理訂貨,提供了如下信息:
①每個(gè)零件的成本價(jià)為40元;②若一次訂購該零件100個(gè)以內(nèi),出廠單價(jià)為60元,若訂購量超過100個(gè)時(shí),每多訂1個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元;③一次性訂購最多a件().根據(jù)以上信息,解答下列問題:
(1)當(dāng)a=600時(shí),設(shè)一次訂購量為x個(gè),一次性訂購實(shí)際出廠單價(jià)為P元,求P關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)a設(shè)定為多少時(shí),一次性訂購a件該工廠獲得的利潤(rùn)最大?并求此時(shí)成出廠單價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦讀活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取40名學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示.
大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計(jì)表如下:
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 1 | 3 | 5 | 6 | 10 | 15 |
請(qǐng)根據(jù)調(diào)查的信息
(1)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù).
(2)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,至少從兩個(gè)不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評(píng)價(jià)該校經(jīng)典詩詞誦背系列活動(dòng)的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是函數(shù)上兩點(diǎn),為一動(dòng)點(diǎn),作軸,軸,下列說法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為37°,在乙樓底部B點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com