【題目】如圖,過矩形的對角線的中點(diǎn)作,交邊于點(diǎn),交邊于點(diǎn),分別連接、.若,,則的長為( )
A.B.C.D.
【答案】A
【解析】
求出∠ACB=∠DAC,然后利用“角角邊”證明△AOF和△COE全等,根據(jù)全等三角形對應(yīng)邊相等可得OE=OF,再根據(jù)對角線互相垂直平分的四邊形是菱形得到四邊形AECF是菱形,再求出∠ECF=60°,然后判斷出△CEF是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得EF=CF,根據(jù)矩形的對邊相等可得CD=AB,然后求出CF,從而得解.
解:如圖:∵矩形對邊AD//BC,
∴∠ACB=∠DAC,
∵O是AC的中點(diǎn),
∴AO=CO,
在△AOF和△COE中,
∴△AOF≌ACOE(ASA),
∴OE=OF,
又∵EF⊥AC,
∴四邊形AECF是菱形,
∵∠DCF=30°,
∴.∠ECF=90°-30°=60°,
∴△CEF是等邊三角形,
∴EF=CF,
∵AB= ,
∴CD=AB=,
∵∠DCF=30°,
∴
∴EF=2,故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與函數(shù)的圖象交于,兩點(diǎn),且點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)已知點(diǎn),過點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn).
①當(dāng)時(shí),求線段的長;
②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們做如下的規(guī)定:如果一個(gè)三角形在運(yùn)動(dòng)變化時(shí)保持形狀和大小不變,則把這樣的三角形稱為三角形板.
把兩塊邊長為4的等邊三角形板和疊放在一起,使三角形板的頂點(diǎn)與三角形板的AC邊中點(diǎn)重合,把三角形板固定不動(dòng),讓三角形板繞點(diǎn)旋轉(zhuǎn),設(shè)射線與射線相交于點(diǎn)M,射線與線段相交于點(diǎn)N.
(1)如圖1,當(dāng)射線經(jīng)過點(diǎn),即點(diǎn)N與點(diǎn)重合時(shí),易證△ADM∽△CND.此時(shí),AM·CN= .
(2)將三角形板由圖1所示的位置繞點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為.其中,問AM·CN的值是否改變?說明你的理由.
(3)在(2)的條件下,設(shè)AM= x,兩塊三角形板重疊面積為,求與的函數(shù)關(guān)系式.(圖2,圖3供解題用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=4.點(diǎn) E 在邊 AB 上,點(diǎn) F 在邊 CD 上,點(diǎn) G、H 在對角線 AC 上.若四邊形 EGFH 是菱形,則 AE 的長是( )
A.2B.3C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是無障礙通道,圖2是其截面示意圖,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.現(xiàn)要對坡面進(jìn)行改造,使改造后的坡角∠BDC=26.5°,需要把水平寬度AC增加多少m(結(jié)果精確到0.1)?(參考數(shù)據(jù):≈1.73,sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A和C分別在x軸、y軸的正半軸上,且AB∥y軸,AB=4,△ABC的面積為2,將△ABC以點(diǎn)B為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DBE,一反比例函數(shù)圖象恰好過點(diǎn)D時(shí),則此反比例函數(shù)解析式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長均為1的方格紙中有線段AB和CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.
(1)畫出一個(gè)以AB為一邊的△ABE,點(diǎn)E在小正方形的頂點(diǎn)上,且∠BAE=45°,△ABE的面積為;
(2)畫出以CD為一腰的等腰△CDF,點(diǎn)F在小正方形的頂點(diǎn)上,且△CDF的面積為;
(3)在(1)、(2)的條件下,連接EF,請直接寫出線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣x+7a+1與直線y=2x﹣2a+4同時(shí)經(jīng)過點(diǎn)P,點(diǎn)Q是以M(0,﹣1)為圓心,MO為半徑的圓上的一個(gè)動(dòng)點(diǎn),則線段PQ的最小值為( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com