【題目】如圖,在平面直角坐標系中,直線與函數(shù)的圖象交于兩點,且點的坐標為

1)求的值;

2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點

①當時,求線段的長;

②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

【答案】1;(2;②

【解析】

1)先把點A代入一次函數(shù)得到a的值,再把點A代入反比例函數(shù),即可求出k;

2)①根據(jù)題意,先求出m的值,然后求出點C、D的坐標,即可求出CD的長度;

②根據(jù)題意,當PC=PD時,點C、D恰好與點A、B重合,然后求出點B的坐標,結(jié)合函數(shù)圖像,即可得到m的取值范圍.

解:(1)把代入,得,

∴點A為(1,3),

代入,得;

2)當時,點P為(20),如圖:

代入直線,得:,

∴點C坐標為(2,4),

代入,得:

;

根據(jù)題意,當PC=PD時,點C、D恰好與點A、B重合,如圖,

,解得:(即點A),

∴點B的坐標為(),

由圖像可知,當時,有

P的左邊,或點P的右邊取到,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據(jù)以上信息,解答下列問題:

(1)求直線所對應的函數(shù)關系式;

(2)已知小穎一家出服務區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當天幾點到達姥姥家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5,AD3,動點P滿足SPABS矩形ABCD,則點PA、B兩點距離之和PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解在校學生對校本課程的喜愛情況,隨機調(diào)查了九年級學生對A,BC,D,E五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個統(tǒng)計圖.

請根據(jù)圖中所提供的信息,完成下列問題:

1)本次被調(diào)查的學生的人數(shù)為   ;

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為   ;

4)若該中學有4000名學生,請估計該校喜愛CD兩類校本課程的學生共有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化,開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?

(2)一道數(shù)學競賽題,需要講16分鐘,為了效果較好,要求學生的注意力指標數(shù)最低達到36,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O隨心點

1)當⊙O的半徑r=2時,A30),B0,4),C,2),D,)中,⊙O隨心點 ;

2)若點E4,3)是⊙O隨心點,求⊙O的半徑r的取值范圍;

3)當⊙O的半徑r=2時,直線y=- x+bb≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O隨心點,直接寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知點,點在反比例函數(shù)的圖象上,軸于點連結(jié)于點,若,則的面積比為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形兩條對角線、交于,過任作一直線與邊,交于,,的垂直平分線與邊,交于,.設正方形的面積為,四邊形的面積為

1)求證:四邊形是正方形;

2)若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過矩形的對角線的中點,交邊于點,交邊于點,分別連接、.若,,則的長為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案