精英家教網 > 初中數學 > 題目詳情

【題目】判斷下列各式從等號左邊到右邊的變形哪些是整式乘法,哪些是因式分解.

(1)a2-9b2=(a+3b)(a-3b);

(2)3y(x+2y)=3xy+6y2;

(3)(3a-1)2=9a2-6a+1;

(4)4y2+12y+9=(2y+3)2;

(5)x2+x=x2(1+);

(6)x2-y2+4y-4=(x-y)(x+y)+4(y-1).

【答案】(2)(3)是整式乘法,(1)(4)是因式分解.

【解析】

根據因式分解和整式乘法的定義即可解答.

(1)(4)的變形是把多項式化為整式乘積的形式,是因式分解;(2)(3)是整式乘法;(5)雖然是把多項式化為積的形式,但(1+)不是整式,不是因式分解;(6)運用乘法公式,結果不是整式乘積的形式,故既不是整式乘法,也不是因式分解.

(2)(3)是整式乘法,(1)(4)是因式分解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算:(1)25×26________;

(2)×________

(3)-a2·a5________;

(4)x2·x2m2________;

(5)(-b)2·(-b)3·(-b)5________

(6)x·x4x5________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC中,B=C,AB=8厘米,BC=6厘米,點DAB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).

1)用的代數式表示PC的長度;

2)若點P、Q的運動速度相等,經過1秒后,BPDCQP是否全等,請說明理由;

3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=AC,射線APABC的外側,點B關于AP的對稱點為D,連接CD交射線AP于點E,連接BE.

(1)根據題意補全圖形;

(2)求證:CD=EB+EC;

(3)求證:∠ABE=ACE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點F.若∠BAC=35°,則∠BFC的大小是( 。

A. 105° B. 110° C. 100° D. 120°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某氣象臺發(fā)現:在某段時間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時間有(
A.9天
B.11天
C.13天
D.22天

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,AB=AC,點D為射線CB上一個動點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,過點EEF∥BC,交直線AC于點F,連接CE.

(1)如圖①,若∠BAC=60°,按邊分類:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如圖②,當點D在線段CB上移動時,判斷△CEF的形狀并證明;

②當點D在線段CB的延長線上移動時,△CEF是什么三角形?請在圖③中畫出相應的圖形,寫出結論并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數根.
其中正確結論的個數是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司保安部去商店購買同一品牌的應急燈和手電筒,查看定價后發(fā)現,購買一個應急燈和5個手電筒共需50元,購買3個應急燈和2個手電筒共需85元.

(1)求出該品牌應急燈、手電筒的定價分別是多少元?

(2)經商談,商店給予該公司購買一個該品牌應急燈贈送一個該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個數是應急燈個數的2倍還多8個,且該公司購買應急燈和手電筒的總費用不超過670元,那么該公司最多可購買多少個該品牌應急燈?

查看答案和解析>>

同步練習冊答案