【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
【答案】(1)PC= 6﹣2t;
(2)△BPD和△CQP全等,理由見解析;
(3)VQ厘米/秒.
【解析】
試題分析:(1)先表示出BP,根據(jù)PC=BC﹣BP,可得出答案;
(2)根據(jù)時間和速度分別求得兩個三角形中的邊的長,根據(jù)SAS判定兩個三角形全等.
(3)根據(jù)全等三角形應滿足的條件探求邊之間的關系,再根據(jù)路程=速度×時間公式,先求得點P運動的時間,再求得點Q的運動速度;
解:(1)BP=2t,則PC=BC﹣BP=6﹣2t;
(2))△BPD和△CQP全等
理由:∵t=1秒∴BP=CQ=2×1=2厘米,
∴CP=BC﹣BP=6﹣2=4厘米,
∵AB=8厘米,點D為AB的中點,
∴BD=4厘米.
∴PC=BD,
在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS);
(3)∵點P、Q的運動速度不相等,
∴BP≠CQ
又∵△BPD≌△CPQ,∠B=∠C,
∴BP=PC=3cm,CQ=BD=4cm,
∴點P,點Q運動的時間t==秒,
∴VQ===厘米/秒.
科目:初中數(shù)學 來源: 題型:
【題目】下列結論正確的是( )
A. 有兩個銳角相等的兩個直角三角形全等; B. 一條斜邊對應相等的兩個直角三角形全等;
C. 頂角和底邊對應相等的兩個等腰三角形全等; D. 兩個等邊三角形全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=-2x2+12x-13,則下列關于此拋物線說法正確的是( )
A. 開口向下,對稱軸為直線x=-3
B. 頂點坐標為(-3,5)
C. 最小值為5
D. 當x>3時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“全民讀書月”活動中,小明調查了班級里40名同學本學期計劃購買課外書的花費情況,并將結果繪制成如圖所示的統(tǒng)計圖,請根據(jù)相關信息,解答下列問題:(直接填寫結果)
(1)本次調查獲取的樣本數(shù)據(jù)的眾數(shù)是 ;
(2)這次調查獲取的樣本數(shù)據(jù)的中位數(shù)是 ;
(3)若該校共有學生1000人,根據(jù)樣本數(shù)據(jù),估計本學期計劃購買課外書花費50元的學生有 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習完一次函數(shù)后,小榮遇到過這樣的一個新穎的函數(shù):y=|x﹣1|,小榮根據(jù)學校函數(shù)的經驗,對函數(shù)y=|x﹣1|的圖象與性質進行了探究.下面是小榮的探究過程,請補充完成:
(1)列表:下表是y與x的幾組對應值,請補充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 4 | 2 | 1 | … |
(2)描點連線:在平面直角坐標系xOy中,請描出以上表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)進一步探究發(fā)現(xiàn),該函數(shù)圖象的最低點的坐標是(1,0),結合函數(shù)的圖象,寫出該函數(shù)的其他性質(一條即可): .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為太陽傘示意圖,當傘收緊時,點P與點A重合,當傘慢慢撐開時,動點P由A向B移動;當點P到過點B時,傘張得最開.已知傘在撐開的過程中,總有PM=PN=CM=CN.則下列說法錯誤的是( )
A.四邊形PNCM可能會出現(xiàn)為正方形
B.四邊形PNCM的周長始終不變
C.當∠CPN=60°時,CP=AP
D.四邊形PNCM的面積始終不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com