【題目】已知二次函數(shù)yax2bxca≠0)圖象上部分點(diǎn)的坐標(biāo)(xy)的對(duì)應(yīng)值如下表所示:

x

0

4

y

0.37

-1

0.37

則方程ax2bx1.370的根是(

A.04B.C.15D.無(wú)實(shí)根

【答案】B

【解析】

利用拋物線經(jīng)過(guò)點(diǎn)(0,0.37)得到c=0.37,根據(jù)拋物線的對(duì)稱性得到拋物線的對(duì)稱軸為直線x=2,拋物線經(jīng)過(guò)點(diǎn),由于方程ax2+bx+1.37=0變形為ax2+bx+0.37=-1,則方程ax2+bx+1.37=0的根理解為函數(shù)值為-1所對(duì)應(yīng)的自變量的值,所以方程ax2+bx+1.37=0的根為.

解:由拋物線經(jīng)過(guò)點(diǎn)(0,0.37)得到c=0.37
因?yàn)閽佄锞經(jīng)過(guò)點(diǎn)(0,0.37)、(4,0.37),
所以拋物線的對(duì)稱軸為直線x=2,
而拋物線經(jīng)過(guò)點(diǎn)

所以拋物線經(jīng)過(guò)點(diǎn)

方程ax2+bx+1.37=0變形為ax2+bx+0.37=-1,
所以方程ax2+bx+0.37=-1的根理解為函數(shù)值為-1所對(duì)應(yīng)的自變量的值,
所以方程ax2+bx+1.37=0的根為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象相交于A(﹣1,m),Bn,﹣1)兩點(diǎn).

1)求出這個(gè)一次函數(shù)的表達(dá)式.

2)求△OAB的面積.

3)直接寫(xiě)出使一次函數(shù)值大于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(感知)小亮遇到了這樣一道題:已知如圖在中,上,的延長(zhǎng)上,于點(diǎn),且,求證:.

小亮仔細(xì)分析了題中的已知條件后,如圖②過(guò)點(diǎn)作,進(jìn)而解決了該問(wèn)題.(不需要證明)

(探究)如圖③,在四邊形中,,邊的中點(diǎn),的延長(zhǎng)線交于點(diǎn),試探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(應(yīng)用)如圖③,在正方形中,邊的中點(diǎn),、分別為,邊上的點(diǎn),若1,∠90°,則的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,拋物線的頂點(diǎn)為M:平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性AMB恒為等腰三角形,我們規(guī)定:當(dāng)AMB為直角三角形時(shí),就稱AMB為該拋物線的完美三角形

1)如圖2,求出拋物線yx2完美三角形斜邊AB的長(zhǎng);

2)若拋物線yax2+4完美三角形的斜邊長(zhǎng)為4,求a的值;

3)若拋物線ymx2+2x+n5完美三角形斜邊長(zhǎng)為n,且ymx2+2x+n5的最大值為﹣1,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.

求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m分別用、、表示;田賽項(xiàng)目:跳遠(yuǎn),跳高分別用表示

該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為______;

該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹(shù)狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=2BC=4,CDABC的中線,E是邊BC上一動(dòng)點(diǎn),將BED沿ED折疊,點(diǎn)B落在點(diǎn)F處,EF交線段CD于點(diǎn)G,當(dāng)DFG是直角三角形時(shí),則CE=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.

已知是比例三角形,,請(qǐng)直接寫(xiě)出所有滿足條件的AC的長(zhǎng);

如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.

如圖2,在的條件下,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等腰RtABC中,∠A90°,點(diǎn)D,E分別在邊AB,AC上,ADAE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   

2)探究證明:把ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說(shuō)明理由;

3)拓展延伸:把ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD8,AB20,請(qǐng)直接寫(xiě)出PMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案