【題目】如圖,在平面直角坐標(biāo)系中,, ,...都是等腰直角三角形,其直角頂點(diǎn),,...均在直線上,設(shè),,,...的面積分別為,,,...,依據(jù)圖形所反映的規(guī)律,S2020__________

【答案】

【解析】

過點(diǎn)、、x軸的垂線段,在結(jié)合等腰,可推導(dǎo)出的坐標(biāo);同理,可得到的坐標(biāo);最后通過尋找這些坐標(biāo)之間的規(guī)律,得到最終結(jié)果

如圖,分別過點(diǎn)、x軸的垂線段,垂足分別為C,D ,E P(3,3),且,是等腰直角三角形,

OC=C=C=3,則D=a,

OD=6+a

∴點(diǎn)的坐標(biāo)為(6+a,a) a.

將點(diǎn)的坐標(biāo)代入中,得 (6+a)+4=a,解得a=

=2a=3,D=

同理求得 = , =

= ×6×3=9,=×3× =,

=××=,,∴=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8,MAB的中點(diǎn),PBC邊上的動(dòng)點(diǎn),連結(jié)PM,以點(diǎn)P為圓心,PM長為半徑作⊙P

1)當(dāng)BP   時(shí),MBPDCP;

2)當(dāng)⊙P與正方形ABCD的邊相切時(shí),求BP的長;

3)設(shè)⊙P的半徑為x,請(qǐng)直接寫出正方形ABCD中恰好有兩個(gè)頂點(diǎn)在圓內(nèi)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax2+bx+cy軸交于點(diǎn)A0,6),與x軸交于點(diǎn)B(﹣2,0),C60).

1)直接寫出拋物線的解析式及其對(duì)稱軸;

2)如圖2,連接AB,AC,設(shè)點(diǎn)Pm,n)是拋物線上位于第一象限內(nèi)的一動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),過點(diǎn)PPDAC于點(diǎn)E,交x軸于點(diǎn)D,過點(diǎn)PPGABAC于點(diǎn)F,交x軸于點(diǎn)G.設(shè)線段DG的長為d,求dm的函數(shù)關(guān)系式,并注明m的取值范圍;

3)在(2)的條件下,若PDG的面積為,

①求點(diǎn)P的坐標(biāo);

②設(shè)M為直線AP上一動(dòng)點(diǎn),連接OM交直線AC于點(diǎn)S,則點(diǎn)M在運(yùn)動(dòng)過程中,在拋物線上是否存在點(diǎn)R,使得ARS為等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M及其對(duì)應(yīng)的點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E在矩形ABCD的邊AD上,AD6,tanACD,連接CE,線段CE繞點(diǎn)C旋轉(zhuǎn)90°,得到線段CF,以線段EF為直徑做O

1)請(qǐng)說明點(diǎn)C一定在O上的理由;

2)點(diǎn)MO上,如圖2,MCO的直徑,求證:點(diǎn)MAD的距離等于線段DE的長;

3)當(dāng)△AEM面積取得最大值時(shí),求O半徑的長;

4)當(dāng)O與矩形ABCD的邊相切時(shí),計(jì)算扇形OCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,與弦所圍成圖形的外部的一定點(diǎn),是弦上的一動(dòng)點(diǎn),連接于點(diǎn).已知,設(shè),兩點(diǎn)間的距離為,兩點(diǎn)間的距離為,兩點(diǎn)間的距離為

小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫圖、測(cè)量分別得到了,的幾組對(duì)應(yīng)值:

0

1

2

3

4

5

5.40

6

4.63

3.89

2.61

2.15

1.79

1.63

0.95

1.20

1.11

1.04

0.99

1.02

1.21

1.40

2.21

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),,并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)的中點(diǎn)時(shí),的長度約為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣5ax+c與坐標(biāo)軸分別交于點(diǎn)A,C,E三點(diǎn),其中A(﹣3,0),C(0,4),點(diǎn)Bx軸上,AC=BC,過點(diǎn)BBDx軸交拋物線于點(diǎn)D,點(diǎn)M,N分別是線段CO,BC上的動(dòng)點(diǎn),且CM=BN,連接MN,AM,AN.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)當(dāng)CMN是直角三角形時(shí),求點(diǎn)M的坐標(biāo);

(3)試求出AM+AN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),直線經(jīng)過點(diǎn),并與交于點(diǎn),過點(diǎn),交于點(diǎn)

1)求的函數(shù)表達(dá)式;

2)當(dāng)時(shí),

①求點(diǎn)的坐標(biāo);

②求

3)將點(diǎn)的橫坐標(biāo)記為,在點(diǎn)移動(dòng)的過程中,直接寫出的范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點(diǎn),連接DEPDE上一點(diǎn),∠BPC90°,延長CPAD于點(diǎn)F.⊙O經(jīng)過PD、F,交CD于點(diǎn)G

1)求證:DFDP;

2)若,,求DG的長;

3)連接BF,若BF是⊙O的切線,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=30°,AB=AC,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α°0α180),得到線段AD,連接BD,交AC于點(diǎn)P

1)當(dāng)α=90時(shí),

①依題意補(bǔ)全圖形;

②求證:PD=2PB;

2)寫出一個(gè)α的值,使得PD=PB成立,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案