【題目】如圖,在△ABC中,∠ACB=90°,AC=6,AB=10.現(xiàn)分別以點A、點B為圓心,以大于AB相同的長為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若將△BDE沿直線MN翻折得△B′DE,使△B′DE與△ABC落在同一平面內(nèi),連接B′E、B′C,則△B′CE的周長為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:△AFD∽△CFE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2BC, E為AD的中點,連接BD,BE,∠ABD=90°
(1)求證:四邊形BCDE為菱形.
(2)連接AC,若AC⊥BE, BC=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中國數(shù)學名著《九章算術》中,有這樣一個問題:“今有共買牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 問家數(shù)、牛價各幾何?”大意是:幾家人湊錢合伙買牛,如果每7家共出190元,那么還缺少330元錢;如果每9家共出270元,又多了30元錢. 問共有多少人家,每頭牛的價錢是多少元?若設有x戶人家,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=-x2+bx+c與x軸交于A(-1,0),B兩點,與y軸交于點C,對稱軸為x=1.
(1)求拋物線的函數(shù)表達式;
(2)在拋物線的對稱軸上求一點P,使點P到點A的距離與到點C的距離之和最小,并求出此時點P的坐標;
(3)是否存在過A,B兩點的拋物線,其頂點M關于x軸的對稱點為N,使得四邊形AMBN為正方形?若存在,請直接寫出此拋物線的函數(shù)表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“一帶一路”為我們打開了交流、合作的大門,也為沿線各國在商貿(mào)等領域提供了更多的便捷,2018年11月5日至10日,首屆中國國際進口博覽會在國家會展中心(上海)舉辦,據(jù)哈外貿(mào)商會發(fā)布消息,博覽會期間,哈Paseka公司與重慶某國際貿(mào)易公司簽訂了供應蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重慶某國際貿(mào)易公司供給優(yōu)質(zhì)蜂蜜共3000萬件,該公司順應新時代購物流,打算分線上和線下兩種方式銷售.
(1)若計劃線上銷售量不低于線下銷售量的25%,求該公司計劃在線下銷售量最多為多少萬件?
(2)該公司在12月上旬銷售優(yōu)質(zhì)蜂蜜共240萬件,且線上線下銷售單件均為100元/件.12月中旬決定線上銷售單價下調(diào)m%,線下銷售單價不變,在這種情況下,12月中旬銷售總量比上旬增加了m%,且中旬線上銷售量占中旬總銷量的,結果中旬銷售總金額比上旬銷售總金額提高了m%.求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E在BC邊上,點F在DC的延長線上,且∠DAE=∠F.
(1) 求證:△ABE∽△ECF;
(2) 若AB=5,AD=8,BE=2,求FC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店以每件60元的價格購進一批貨物,零售價為每件80元時,可以賣出100件(按相關規(guī)定零售價不能超過80元).如果零售價在80元的基礎上每降價1元,可以多賣出10件,當零售價在80元的基礎上降價x元時,能獲得2160元的利潤,根據(jù)題意,可列方程為( 。
A.x(100+10x)=2160B.(20﹣x)(100+10x)=2160
C.(20+x)(100+10x)=2160D.(20﹣x)(100﹣10x)=2160
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com