【題目】仔細(xì)閱讀下面解方程組的方法,然后解決有關(guān)問題:解方程組時,如果直接消元,那將會很繁瑣,若采用下面的解法,則會簡單很多.
解:①-②,得:2x+2y=2,即x+y=1③
③×16,得:16x+16y=16④
②-④,得:x=-1
將x=-1
代入③得:y=2
∴原方程組的解為:
(1)請你采用上述方法解方程組:
(2)請你采用上述方法解關(guān)于x,y的方程組,其中.
【答案】(1) (2)
【解析】
(1)先把兩式相減得出x+y的值,再把x+y的值與2010相乘,再用加減消元法求出x的值,用代入消元法求出y的值即可;
(2)先把兩式相減得出(m-n)x+(m-n)y=m-n,的值,再用加減消元法求出x的值,用代入消元法求出y的值即可.
(1)
①-②,得:6x+6y=12,即x+y=2③,
③×2010,得:2010x+2010y=4020④,
④-②,得:y=404,
將y=404代入③得:x=-402,
∴方程組的解為:
(2)
①-②,得:(m-n)x+(m-n)y=m-n,
∵m≠n,
∴x+y=1③,
③×(n+3),得:(n+3)x+(n+3)y=n+3④,
④-②,得:y=3,
將y=3代入③得:x=-2,
∴方程組的解為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點E在邊CD上,在矩形ABCD的左側(cè)作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結(jié)AF交BD于點H.
(1)求證:BD∥CF;
(2)求證:H是AF的中點;
(3)連結(jié)CH,若HC⊥BD,求a:b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),E是直線AB、CD內(nèi)部一點,AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于 的一元二次方程 的兩個根,且OA>OB
(1)求cos∠ABC的值。
(2)若E為x軸上的點,且 ,求出點E的坐標(biāo),并判斷△AOE與△DAO是否相似?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個項點的坐標(biāo)分別為A (3. 3),B (-3, 0), C (0. -2).
(1)在下面的平面直角坐標(biāo)系中分別描出A,B, C三點,并畫出△ABC;
(2)將(1)中的△ABC向上平移3個單位長度,向左中移2個單位長度,得到△在圖中畫出△,請分別寫出A1、B1、C1三點的坐標(biāo).
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,圖①、圖②、圖③均為頂點都在格點上的三角形(每個小方格的頂點叫格點),
(1)在圖1中,圖①經(jīng)過一次變換(填“平移”或“旋轉(zhuǎn)”或“軸對稱”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過一次旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點(填“A”或 “B”或“C”);
(3)在圖2中畫出圖①繞點A順時針旋轉(zhuǎn)90°后的圖④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝中華人民共和國七十周年華誕,某校舉行書畫大賽,準(zhǔn)備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的師生.已知購買個甲種文具、個乙種文具共需花費元;購買個甲種文具、個乙種文具共需花費元.
(1)求購買一個甲種文具、一個乙種文具各需多少元?
(2)若學(xué)校計劃購買這兩種文具共個,投入資金不少于元又不多于元,設(shè)購買甲種文具個,求有多少種購買方案?
(3)設(shè)學(xué)校投入資金元,在(2)的條件下,哪種購買方案需要的資金最少?最少資金是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com