【題目】如圖,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
【答案】(1)見解析(2)成立
【解析】
試題(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因為DF=BE,所以可證出GE=BE+GD成立.
試題解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
科目:初中數學 來源: 題型:
【題目】點D在∠ABC內,點E為邊BC上一點,連接DE、CD.
(1)如圖1,連接AE,若∠AED=∠A+∠D,求證:AB//CD.
(2)在(1)的結論下,過點A的直線MA//ED.
①如圖2,當點E在線段BC上時,猜想并驗證∠MAB與∠CDE的數量關系;
②如圖3,當點E在線段BC的延長線上時,猜想并驗證∠MAB與∠CDE的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶實驗外國語學校是一所外語小班制教學的特色學校,初二年級某英語小班共有名同學,學號依次為號,號,……20號,現(xiàn)隨機分成甲、乙、丙三個小組,每組人數若干.若將乙組的小東(號)調整到甲組,將丙組的小英(號)調整到乙組,此時甲、丙兩組同學學號的平均數都將比調整前增加,乙組同學學號的平均數將比調整前增加;同時乙組的小強(號)經過計算發(fā)現(xiàn),他的學號數高于調整前乙組同學學號的平均數,卻低于調整后乙組的平均數則調整前甲組共有_____名同學.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體考在即,初三(1)班的課題研究小組對本年級530名學生的體育達標情況進行調查,制作出如圖所示的統(tǒng)計圖,其中1班有50人.(注:30分以上為達標,滿分50分)根據統(tǒng)計圖,解答下面問題:
(1)初三(1)班學生體育達標率和本年級其余各班學生體育達標率各是多少?
(2)若除初三(1)班外其余班級學生體育考試成績在30﹣﹣40分的有120人,請補全扇形統(tǒng)計圖;(注:請在圖中分數段所對應的圓心角的度數)
(3)如果要求全年級學生的體育達標率不低于90%,試問在本次調查中,該年級全體學生的體育達標率是否符合要求?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,周長為a的圓上有且僅有一點A在數軸上,點A所表示的數為1.該圓沿著數軸向右滾動一周后A對應的點為B,且滾動中恰好經過4個整數點(不包括A、B兩點),則a的取值范圍為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,是角平分線,是上的點, 相交于點.
(1) 如圖2,若=90°,求證: ;
(2) 如圖1,若=( 0°< <180°).
①求的值(用含的代數式表示);
②是否存在,使小于,如果存在,求出的范圍,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),甲車勻速前往B地,到達B地立即以另一速度按原路勻速返回到A地;乙車勻速前往A地,設甲、乙兩車距A地的路程為y(千米),甲車行駛的時間為x(時),y與x之間的函數圖象如圖所示
(1)求甲車從A地到達B地的行駛時間;
(2)求甲車返回時y與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)求乙車到達A地時甲車距A地的路程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com