【題目】如圖,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( )
A. B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在正方形中,、分別是、邊上的點,,連接,交于點.求證:且;
(2)如圖②,若點、分別在、的延長線上,且,(1)中的結(jié)論是否成立?如果成立,請說明理由;
(3)如圖③,在圖②的基礎(chǔ)上連接、、、、、分別是、、、的中點,請直接寫出四邊形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC中,BD,CE分別是AC,AB邊上的高,BQ=AC,點F在CE的延長線上,CF=AB,求證:AF⊥AQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月22日是世界地球日,為了增強學(xué)生環(huán)保意識,某中學(xué)八年級舉行了“環(huán)保知識競賽”活動,為了了解本次競賽情況,只抽取了部分學(xué)生的成績(滿分100分,得分均為正整數(shù))進行統(tǒng)計,請你根據(jù)下面還未完成的頻數(shù)分布表和頻數(shù)分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | a | b |
(1)a= b= ;
(2)補全頻數(shù)分布直方圖;
(3)該校八年級有500名學(xué)生,估計八年級學(xué)生中競賽成績高于80分的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣+bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)求當(dāng)x滿足什么條件時,函數(shù)值大于0?;
(3)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=x-3交x軸于點B,交y軸于點C,拋物線經(jīng)過點A(-1,0),B,C三點,點F在y軸負半軸上,OF=OA.
(1)求拋物線的解析式;
(2)在第一象限的拋物線上存在一點P,滿足S△ABC=S△PBC,請求出點P的坐標;
(3)點D是直線BC的下方的拋物線上的一個動點,過D點作DE∥y軸,交直線BC于點E,①當(dāng)四邊形CDEF為平行四邊形時,求D點的坐標;
②是否存在點D,使CE與DF互相垂直平分?若存在,請求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點D作DE⊥AC于E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用大小相等的小正方形按一定規(guī)律拼成的,則第10個圖形是_________個小正方形,第n 個圖形是___________個小正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com