【題目】某中學庫存若干套桌凳,準備修理后支援貧困山區(qū)學校,現(xiàn)有甲、乙兩木工組,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲單獨修完這些桌凳比乙單獨修完多用9天,學校每天付甲組80元修理費,付乙組110元修理費.
(1)問該中學庫存多少套桌凳?
(2)在修理過程中,學校要派一名工人進行質量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:①由甲單獨修理;②由乙單獨修理;③甲、乙合作同時修理.你認為哪種方案省時又省錢為什么?
【答案】(1)該中學庫存900套桌凳(2)甲、乙合作同時修理.這種方案省時又省錢
【解析】
(1)利用“甲單獨修完這些桌凳用的天數(shù)=乙單獨修完這些課桌用的天數(shù)+9天”這一相等關系列出方程求解即可.
(2)根據(jù)題意求出三種方案的花費,比較即得.
解:(1)設該中學庫存x套桌凳,由題意得
解這個方程得:x=900
答:該中學庫存900套桌凳;
(2)①由甲單獨修理(900÷20) ×(80+10)=4050(元)
②由乙單獨修理(900÷25) ×(110+10)=4320(元)
③設甲、乙合作同時修理需要y天
(20+25)y=900
∴y=20
(元)
4000 < 4050 < 4320
答: 甲、乙合作同時修理.這種方案省時又省錢
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A、B的坐標分別為( 2,0 ),(4,0),點C的坐標為(m, m)(m為非負數(shù)),則CA+CB的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的單位正方形網格中,△ABC經過平移后得到△A1B1C1,已知在AC上一點P(2.4,2)平移后的對應點為P1,點P1繞點O逆時針旋轉180°,得到對應點P2,則P2點的坐標為
A.(1.4,-1) B.(1.5,2) C.(1.6,1) D.(2.4,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學問題:用邊長相等的正三角形、正方形和正六邊形能否進行平面圖形的鑲嵌?
問題探究:為了解決上述數(shù)學問題,我們采用分類討論的思想方法去進行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進行平面圖形的鑲嵌?
第一類:選正三角形.因為正三角形的每一個內角是60°,所以在鑲嵌平面時,圍繞某一點有6個正三角形的內角可以拼成一個周角,所以用正三角形可以進行平面圖形的鑲嵌.
第二類:選正方形.因為正方形的每一個內角是90°,所以在鑲嵌平面時,圍繞某一點有4個正方形的內角可以拼成一個周角,所以用正方形也可以進行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫出探究過程及結論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時,設圍繞某一點有x個正三角形和y個正方形的內角可以拼成個周角.根據(jù)題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數(shù)解為.
鑲嵌平面時,在一個頂點周圍圍繞著3個正三角形和2個正方形的內角可以拼成一個周角,所以用正三角形和正方形可以進行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結論)
第六類:選正方形和正六邊形,(不寫探究過程,只寫出結論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結論),
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解九年級課業(yè)負擔情況,某校隨機抽取80名九年級學生進行問卷調查,在整理并匯總這80張有效問卷的數(shù)據(jù)時發(fā)現(xiàn),每天完成課外作業(yè)時間,最長不超過180分鐘,最短不少于60分鐘,并將調查結果繪制成如圖所示的頻數(shù)分布直方圖.
(1)被調查的80名學生每天完成課外作業(yè)時間的中位數(shù)在_____組(填時間范圍).
(2)該校九年級共有800名學生,估計大約有_____名學生每天完成課外作業(yè)時間在120分鐘以上(包括120分鐘)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD的邊長是4,∠DAB=60,點M,N分別在邊AD,AB上,MN⊥AC,垂足為P,把△AMN沿MN折疊得到△A'MN,若△A'DC恰為等腰三角形,則AP的長為_____。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com