【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,交直徑AB的延長于點(diǎn)D,若∠ABC=65°,則∠D的度數(shù)是( )
A.25°B.30°C.40°D.50°
【答案】C
【解析】
如圖,連接OC,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)AB是直角可得∠ACB=90°,根據(jù)角的和差關(guān)系可得∠BCD=∠CAB,根據(jù)直角三角形兩銳角互余的性質(zhì)可求出∠CAB的度數(shù),利用三角形外角性質(zhì)即可求出∠D的度數(shù).
如圖,連接OC,
∵CD是⊙O的切線,
∴∠OCD=90°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵∠ABC=65°,
∴∠CAB=90°-∠ABC=25°,
∵∠OCA+∠OCB=∠BCD+∠OCB=90°,
∴∠BCD=∠OCA,
∵OA=OC,
∴∠OCA=∠CAB,
∴∠BCD=∠CAB=25°,
∴∠D=∠ABC-∠BCD=40°,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將拋物線y=ax2(a<0)平移到頂點(diǎn)M恰好落在直線y=x+3上,且拋物線過直線與y軸的交點(diǎn)A,設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為m(m>0).
(1)用含m的代數(shù)式表示a;
(2)如圖2,Rt△CBT與拋物線交于C、D、T三點(diǎn),∠B=90,BC∥x軸,CD=2,BD=t,BT=2t,△TDC的面積為4
①求拋物線方程;
②如圖3,P為拋物線AM段上任一點(diǎn),Q(0,4),連結(jié)QP并延長交線段AM于N,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年5月9日,美國政府宣布自2019年5月10日起,對(duì)中國進(jìn)口的億美元清單商品加征的關(guān)稅稅率由提高到.為了解我校師生對(duì)此事的關(guān)注度,學(xué)生張明采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題: 我校師生對(duì)“加征關(guān)稅稅率”了解情況條形統(tǒng)計(jì)圍我校師生對(duì)“加征關(guān)稅稅率”了解情況扇形統(tǒng)計(jì)圍
本次調(diào)查的人數(shù)有 人, 在扇形統(tǒng)計(jì)圖中,的值是 ;請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
在被調(diào)查的教師中,有男女共名教師愿意接受深入調(diào)查,現(xiàn)要從這名教師中隨機(jī)抽取名教
師進(jìn)行深入調(diào)查,請(qǐng)畫樹狀圖或者列表求出所抽取的名教師恰好是名男教師和名女教師的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點(diǎn)E的直線DE,垂足為點(diǎn)D,且ME平分∠DMN.
求證:(1)DE是⊙O的切線;
(2)ME2=MDMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+1與圖數(shù)y=的限象交于A(﹣2,a),B兩點(diǎn).
(1)寫出a,k的值________;
(2)已知點(diǎn)P(0,n),過點(diǎn)P作平行于x軸的直線l,交函數(shù)y=的圖象于點(diǎn) C(x1, y1),交直線 y=﹣x+1的圖象于點(diǎn) D(x2,y2),若|x1|≤|x2|,結(jié)合函數(shù)圖象,請(qǐng)寫出 m的取值范圍________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘一名職員,先對(duì)應(yīng)聘者進(jìn)行筆試考核,筆試進(jìn)入前兩名的選手再進(jìn)入面試方面的考核,最終在參加面試的兩人中錄取一人.該公司將應(yīng)聘者的筆試成績劃分了4個(gè)等級(jí):設(shè)應(yīng)聘者的成績?yōu)?/span>x(單位:分),當(dāng)60≤x<70時(shí)為不合格;當(dāng)70≤x<80時(shí)為合格;當(dāng)80≤x<90時(shí)為良好;當(dāng)90≤x≤100時(shí)為優(yōu)秀.下面是參加筆試的10名應(yīng)聘者的成績:86 75 67 86 92 75 82 90 86 78
(1)這10名應(yīng)聘者的筆試成績的中位數(shù)是_______,眾數(shù)是_______;
(2)請(qǐng)將下面表示上述4個(gè)等級(jí)的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該公司對(duì)進(jìn)入筆試前兩名的甲、乙二人進(jìn)行了面試考核,面試中包括形體、口才、人際交往、創(chuàng)新能力,他們的成績(百分制)如下表:
候選人 | 面試項(xiàng)目 | |||
形體 | 口才 | 人際交往 | 創(chuàng)新能力 | |
甲 | 86 | 90 | 95 | 90 |
乙 | 95 | 85 | 90 | 92 |
如果公司根據(jù)經(jīng)營性質(zhì)和崗位要求,以面試成績中形體占10%,口才占20%,人際交往40%,創(chuàng)新能力占30%確定成績,那么你認(rèn)為該公司應(yīng)該錄取誰?請(qǐng)通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2a,E為BC邊的中點(diǎn), 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個(gè)三角形紙片,其中,分別是邊上的點(diǎn),連接.
(1)如圖,若將紙片的一角沿折疊,折疊后點(diǎn)落在邊上的點(diǎn)處,且使S四邊形ECBF,求的長;
(2)如圖,若將紙片的一角沿折疊,折疊后點(diǎn)落在邊上的點(diǎn)處,且使.試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com