【題目】已知下列命題:①等弧所對(duì)的圓心角相等;②90°的圓周角所對(duì)的弦是直徑;③關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則ac< 0;④若二次函數(shù)y= 的圖象上有兩點(diǎn)(-1,y1)、(2,y2),則>;其中真命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】B
【解析】
利用圓周角定理、一元二次方程根的判別式及二次函數(shù)的增減性分別判斷正誤后即可得到正確的選項(xiàng).
解:①等弧所對(duì)的圓心角也相等,正確,是真命題;
②90°的圓周角所對(duì)的弦是直徑,正確,是真命題;
③關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根,
則b2-ac>0,但不能夠說(shuō)明ac< 0,所以原命題錯(cuò)誤,是假命題;
④若二次函數(shù)的圖象上有兩點(diǎn)(-1,y1)(2,y2),則y1>y2,不確定,因?yàn)?/span>a 的正負(fù)性不確定,所以原命題錯(cuò)誤,是假命題;
其中真命題的個(gè)數(shù)是2,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工“適度取餐,減少浪費(fèi)”該公司共有10個(gè)部門(mén),且各部門(mén)的人數(shù)相同.為了解午餐的浪費(fèi)情況,從這10個(gè)部門(mén)中隨機(jī)抽取了兩個(gè)部門(mén),進(jìn)行了連續(xù)四周(20個(gè)工作日)的調(diào)查,得到這兩個(gè)部門(mén)每天午餐浪費(fèi)飯菜的重量,以下簡(jiǎn)稱(chēng)“每日餐余重量”(單位:千克),并對(duì)這些數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息..部門(mén)每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):
.部門(mén)每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8
.部門(mén)每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 兩個(gè)部門(mén)這20個(gè)工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:
部門(mén) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
| 6.4 |
| 7.0 |
| 6.6 | 7.2 |
|
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫(xiě)出表中的值;
(2)在這兩個(gè)部門(mén)中,“適度取餐,減少浪費(fèi)”做得較好的部門(mén)是________(填“”或“”),理由是____________;
(3)結(jié)合這兩個(gè)部門(mén)每日餐余重量的數(shù)據(jù),估計(jì)該公司(10個(gè)部門(mén))一年(按240個(gè)工作日計(jì)算)的餐余總重量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點(diǎn)D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為深入開(kāi)展校園陽(yáng)光一小時(shí)活動(dòng),九年級(jí)(1)班學(xué)生積極參與鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長(zhǎng)跑、鉛球中選一項(xiàng)進(jìn)行鍛煉,訓(xùn)練后都進(jìn)行了測(cè)試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)上面提供的信息回答下列問(wèn)題:
(1)(扇形圖中)跳繩部分的扇形圓心角為 度,該班共有 人;訓(xùn)練后,籃球定時(shí)定點(diǎn)投籃每個(gè)人進(jìn)球數(shù)的平均數(shù)是 ,眾數(shù)是 ;
(2)老師決定從選擇跳繩訓(xùn)練的3名女生和1名男生中任選兩名學(xué)生先進(jìn)行測(cè)試,請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求恰好選中兩名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于,兩點(diǎn),與軸和軸分別交于兩點(diǎn),軸,軸,垂足分別為點(diǎn),且與交于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)的坐標(biāo);
(2)直接寫(xiě)出反比例函數(shù)圖像位于第一象限且時(shí)自變量的取值范圍;
(3)求與面積的比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:等腰三角形具有性質(zhì)“等邊對(duì)等角”.事實(shí)上,不等邊三角形也具有類(lèi)似性質(zhì)“大邊對(duì)大角”:如圖1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.證明如下:將AB沿△ABC的角平分線AD翻折(如圖2),因?yàn)?/span>AB>AC,所以點(diǎn)B落在AC的延長(zhǎng)線上的點(diǎn)B'處.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.
(1)靈活運(yùn)用:從上面的證法可以看出,折紙常常能為證明一個(gè)命題提供思路和方法.由此小明想到可用類(lèi)似方法證明“大角對(duì)大邊”:如圖3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分線翻折……請(qǐng)你幫助小明完成后面的證明過(guò)程.
(2)拓展延伸:請(qǐng)運(yùn)用上述方法或結(jié)論解決如下問(wèn)題:
如圖4,已知M為正方形ABCD的邊CD上一點(diǎn)(不含端點(diǎn)),連接AM并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)N.求證:AM+AN>2BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格圖中有格點(diǎn)△ABC(注:頂點(diǎn)在網(wǎng)格線交點(diǎn)處的三角形叫做格點(diǎn)三角形).只用沒(méi)有刻度的直尺,按如下要求畫(huà)圖,
(1)以點(diǎn)C為位似中心,在如圖中作△DEC∽ABC,且相似比為1:2;
(2)若點(diǎn)B為原點(diǎn),點(diǎn)C(4,0),請(qǐng)?jiān)?/span>如圖中畫(huà)出平面直角坐標(biāo)系,作出△ABC的外心,并直接寫(xiě)出△ABC的外心的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】記某商品銷(xiāo)售單價(jià)為x元,商家銷(xiāo)售此種商品每月獲得的銷(xiāo)售利潤(rùn)為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷(xiāo)售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷(xiāo)售利潤(rùn)1800元;當(dāng)商家將此種商品銷(xiāo)售單價(jià)定為80元時(shí),他每月可獲得銷(xiāo)售利潤(rùn)1550元,則y與x的函數(shù)關(guān)系式是( )
A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900D.y=﹣2(x﹣65)2+2000
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com