【題目】如圖,在平面直角坐標(biāo)系中,點,點,點P是直線上一點,且,則點P的坐標(biāo)為______.
【答案】
【解析】
由于題目中給出,則可考慮構(gòu)造等腰直角三角形進(jìn)行解決,將AB順時針旋轉(zhuǎn)得到線段BC,求出點C的坐標(biāo),連接AC,則AC與BP的交點M即為線段AC的中點,可求出M的坐標(biāo),則直線BP的解析式亦可求的,再將直線與直線BP的解析式聯(lián)立成方程組,即可求出點P的坐標(biāo).
如圖所示,
將線段AB繞點B順時針旋轉(zhuǎn)得到線段BC,則點C的坐標(biāo)為,
由于旋轉(zhuǎn)可知,為等腰直角三角形,令線段AC和線段BP交于點M,則M為線段AC的中點,
所以點M的坐標(biāo)為,又B為,設(shè)直線BP為,將點B和點M代入可得,
解得,,可得直線BP為,由于點P為直線BP和直線的交點,
則由解得,所以點P的坐標(biāo)為,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】清朝康熙皇帝是我國歷史上對數(shù)學(xué)很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專著,其中有一文《積求勾股法》,它對“三邊長為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長”這一問題提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語言表述是:“若直角三角形的三邊長分別為3、4、5的整數(shù)倍,設(shè)其面積為S,則第一步: =m;第二步: =k;第三步:分別用3、4、5乘以k,得三邊長”.
(1)當(dāng)面積S等于150時,請用康熙的“積求勾股法”求出這個直角三角形的三邊長;
(2)你能證明“積求勾股法”的正確性嗎?請寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)求證:EG2= AFGF;
(3)若AG=6,EG=2 ,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1: .
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次藝術(shù)作品制作比賽中,某小組八件作品的成績單位:分分別是:7、9、8、9、8、10、9、7,下列說法不正確的是
A. 中位數(shù)是B. 平均數(shù)是C. 眾數(shù)是9D. 極差是3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負(fù)數(shù);③非負(fù)數(shù)就是正數(shù);④不僅是有理數(shù),而且是分?jǐn)?shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù).其中錯誤的說法的個數(shù)為( )
A.7個B.6個C.5個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺“走基層”欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是【 】
(A)汽車在高速公路上的行駛速度為100km/h
(B)鄉(xiāng)村公路總長為90km
(C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h
(D)該記者在出發(fā)后4.5h到達(dá)采訪地
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點C在原點,將其繞著點O旋轉(zhuǎn),若頂點A恰好落在點處則的長為______;點B的坐標(biāo)為______直接寫結(jié)果
感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點,點,試求直線AB的函數(shù)表達(dá)式.
拓展研究:如圖3,在直角坐標(biāo)系中,點,過點B作軸,垂足為點A,作軸,垂足為點C,P是線段BC上的一個動點,點Q是直線上一動點問是否存在以點P為直角頂點的等腰,若存在,請求出此時P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的點D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com